Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Oct;8(10):2110–2120. doi: 10.1110/ps.8.10.2110

Global and local dynamics of the human U1A protein determined by tryptophan fluorescence.

J M Jean 1, C Clerte 1, K B Hall 1
PMCID: PMC2144131  PMID: 10548057

Abstract

Tryptophan residues have been introduced into two domains of the human U1A protein to probe solution dynamics. The full length protein contains 282 residues, separated into three distinct domains: the N-terminal RBD1 (RNA Binding Domain I), consisting of amino acids 1-101; the C-terminal RBD2, residues 202-282; and the intervening linker region. Tryptophan residues have been substituted for specific phenylalanine residues on the surface of the beta-sheet of either RBD1 or RBD2, thus introducing a single solvent exposed tryptophan as a fluorescence reporter. Both steady-state and time-resolved fluorescence measurements of the isolated RBD domains show that each tryptophan experiences a unique environment on the beta-sheet surface. The spectral properties of each tryptophan in RBD1 and RBD2 are preserved in the context of the U1A protein, indicating these domains do not interact with each other or with the linker region. The rotational correlation times of the isolated RBDs and the whole U1A, determined by dynamic polarization measurements, show that the linker region is highly flexible such that each RBD exhibits uncorrelated motion.

Full Text

The Full Text of this article is available as a PDF (341.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avis J. M., Allain F. H., Howe P. W., Varani G., Nagai K., Neuhaus D. Solution structure of the N-terminal RNP domain of U1A protein: the role of C-terminal residues in structure stability and RNA binding. J Mol Biol. 1996 Mar 29;257(2):398–411. doi: 10.1006/jmbi.1996.0171. [DOI] [PubMed] [Google Scholar]
  2. Bandziulis R. J., Swanson M. S., Dreyfuss G. RNA-binding proteins as developmental regulators. Genes Dev. 1989 Apr;3(4):431–437. doi: 10.1101/gad.3.4.431. [DOI] [PubMed] [Google Scholar]
  3. Beechem J. M. Global analysis of biochemical and biophysical data. Methods Enzymol. 1992;210:37–54. doi: 10.1016/0076-6879(92)10004-w. [DOI] [PubMed] [Google Scholar]
  4. Boelens W., Scherly D., Jansen E. J., Kolen K., Mattaj I. W., van Venrooij W. J. Analysis of in vitro binding of U1-A protein mutants to U1 snRNA. Nucleic Acids Res. 1991 Sep 11;19(17):4611–4618. doi: 10.1093/nar/19.17.4611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Callis P. R. 1La and 1Lb transitions of tryptophan: applications of theory and experimental observations to fluorescence of proteins. Methods Enzymol. 1997;278:113–150. doi: 10.1016/s0076-6879(97)78009-1. [DOI] [PubMed] [Google Scholar]
  6. Eftink M. R. Fluorescence techniques for studying protein structure. Methods Biochem Anal. 1991;35:127–205. doi: 10.1002/9780470110560.ch3. [DOI] [PubMed] [Google Scholar]
  7. Garcia de la Torre J. G., Bloomfield V. A. Hydrodynamic properties of complex, rigid, biological macromolecules: theory and applications. Q Rev Biophys. 1981 Feb;14(1):81–139. doi: 10.1017/s0033583500002080. [DOI] [PubMed] [Google Scholar]
  8. Grodberg J., Dunn J. J. ompT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J Bacteriol. 1988 Mar;170(3):1245–1253. doi: 10.1128/jb.170.3.1245-1253.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gubser C. C., Varani G. Structure of the polyadenylation regulatory element of the human U1A pre-mRNA 3'-untranslated region and interaction with the U1A protein. Biochemistry. 1996 Feb 20;35(7):2253–2267. doi: 10.1021/bi952319f. [DOI] [PubMed] [Google Scholar]
  10. Gunderson S. I., Vagner S., Polycarpou-Schwarz M., Mattaj I. W. Involvement of the carboxyl terminus of vertebrate poly(A) polymerase in U1A autoregulation and in the coupling of splicing and polyadenylation. Genes Dev. 1997 Mar 15;11(6):761–773. doi: 10.1101/gad.11.6.761. [DOI] [PubMed] [Google Scholar]
  11. Hall K. B., Stump W. T. Interaction of N-terminal domain of U1A protein with an RNA stem/loop. Nucleic Acids Res. 1992 Aug 25;20(16):4283–4290. doi: 10.1093/nar/20.16.4283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Klein Gunnewiek J. M., van de Putte L. B., van Venrooij W. J. The U1 snRNP complex: an autoantigen in connective tissue diseases. An update. Clin Exp Rheumatol. 1997 Sep-Oct;15(5):549–560. [PubMed] [Google Scholar]
  13. Kranz J. K., Hall K. B. RNA recognition by the human U1A protein is mediated by a network of local cooperative interactions that create the optimal binding surface. J Mol Biol. 1999 Jan 8;285(1):215–231. doi: 10.1006/jmbi.1998.2296. [DOI] [PubMed] [Google Scholar]
  14. Kranz J. K., Lu J., Hall K. B. Contribution of the tyrosines to the structure and function of the human U1A N-terminal RNA binding domain. Protein Sci. 1996 Aug;5(8):1567–1583. doi: 10.1002/pro.5560050812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lakowicz J. R., Keating-Nakamoto S. Red-edge excitation of fluorescence and dynamic properties of proteins and membranes. Biochemistry. 1984 Jun 19;23(13):3013–3021. doi: 10.1021/bi00308a026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lu J., Hall K. B. An RBD that does not bind RNA: NMR secondary structure determination and biochemical properties of the C-terminal RNA binding domain from the human U1A protein. J Mol Biol. 1995 Apr 7;247(4):739–752. doi: 10.1006/jmbi.1995.0177. [DOI] [PubMed] [Google Scholar]
  17. Lu J., Hall K. B. Tertiary structure of RBD2 and backbone dynamics of RBD1 and RBD2 of the human U1A protein determined by NMR spectroscopy. Biochemistry. 1997 Aug 26;36(34):10393–10405. doi: 10.1021/bi9709811. [DOI] [PubMed] [Google Scholar]
  18. Nagai K., Oubridge C., Jessen T. H., Li J., Evans P. R. Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein A. Nature. 1990 Dec 6;348(6301):515–520. doi: 10.1038/348515a0. [DOI] [PubMed] [Google Scholar]
  19. Oubridge C., Ito N., Evans P. R., Teo C. H., Nagai K. Crystal structure at 1.92 A resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature. 1994 Dec 1;372(6505):432–438. doi: 10.1038/372432a0. [DOI] [PubMed] [Google Scholar]
  20. Rost B., Sander C. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins. 1994 May;19(1):55–72. doi: 10.1002/prot.340190108. [DOI] [PubMed] [Google Scholar]
  21. Rost B., Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol. 1993 Jul 20;232(2):584–599. doi: 10.1006/jmbi.1993.1413. [DOI] [PubMed] [Google Scholar]
  22. Rost B., Sander C., Schneider R. PHD--an automatic mail server for protein secondary structure prediction. Comput Appl Biosci. 1994 Feb;10(1):53–60. doi: 10.1093/bioinformatics/10.1.53. [DOI] [PubMed] [Google Scholar]
  23. Salz H. K., Flickinger T. W. Both loss-of-function and gain-of-function mutations in snf define a role for snRNP proteins in regulating Sex-lethal pre-mRNA splicing in Drosophila development. Genetics. 1996 Sep;144(1):95–108. doi: 10.1093/genetics/144.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Scherly D., Boelens W., van Venrooij W. J., Dathan N. A., Hamm J., Mattaj I. W. Identification of the RNA binding segment of human U1 A protein and definition of its binding site on U1 snRNA. EMBO J. 1989 Dec 20;8(13):4163–4170. doi: 10.1002/j.1460-2075.1989.tb08601.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sillekens P. T., Habets W. J., Beijer R. P., van Venrooij W. J. cDNA cloning of the human U1 snRNA-associated A protein: extensive homology between U1 and U2 snRNP-specific proteins. EMBO J. 1987 Dec 1;6(12):3841–3848. doi: 10.1002/j.1460-2075.1987.tb02721.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Simpson G. G., Clark G. P., Rothnie H. M., Boelens W., van Venrooij W., Brown J. W. Molecular characterization of the spliceosomal proteins U1A and U2B" from higher plants. EMBO J. 1995 Sep 15;14(18):4540–4550. doi: 10.1002/j.1460-2075.1995.tb00133.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tang J., Rosbash M. Characterization of yeast U1 snRNP A protein: identification of the N-terminal RNA binding domain (RBD) binding site and evidence that the C-terminal RBD functions in splicing. RNA. 1996 Oct;2(10):1058–1070. [PMC free article] [PubMed] [Google Scholar]
  28. Will C. L., Rümpler S., Klein Gunnewiek J., van Venrooij W. J., Lührmann R. In vitro reconstitution of mammalian U1 snRNPs active in splicing: the U1-C protein enhances the formation of early (E) spliceosomal complexes. Nucleic Acids Res. 1996 Dec 1;24(23):4614–4623. doi: 10.1093/nar/24.23.4614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. van Gelder C. W., Gunderson S. I., Jansen E. J., Boelens W. C., Polycarpou-Schwarz M., Mattaj I. W., van Venrooij W. J. A complex secondary structure in U1A pre-mRNA that binds two molecules of U1A protein is required for regulation of polyadenylation. EMBO J. 1993 Dec 15;12(13):5191–5200. doi: 10.1002/j.1460-2075.1993.tb06214.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES