Abstract
The structural and dynamical behavior of the 41-56 beta-hairpin from the protein G B1 domain (GB1) has been studied at different temperatures using molecular dynamics (MD) simulations in an aqueous environment. The purpose of these simulations is to establish the stability of this hairpin in view of its possible role as a nucleation site for protein folding. The conformation of the peptide in the crystallographic structure of the protein GB1 (native conformation) was lost in all simulations. The new equilibrium conformations are stable for several nanoseconds at 300K (>10 ns), 350 K (>6.5 ns), and even at 450 K (up to 2.5 ns). The new structures have very similar hairpin-like conformations with properties in agreement with available experimental nuclear Overhauser effect (NOE) data. The stability of the structure in the hydrophobic core region during the simulations is consistent with the experimental data and provides further evidence for the role played by hydrophobic interactions in hairpin structures. Essential dynamics analysis shows that the dynamics of the peptide at different temperatures spans basically the same essential subspace. The main equilibrium motions in this subspace involve large fluctuations of the residues in the turn and ends regions. Of the six interchain hydrogen bonds, the inner four remain stable during the simulations. The space spanned by the first two eigenvectors, as sampled at 450 K, includes almost all of the 47 different hairpin structures found in the database. Finally, analysis of the hydration of the 300 K average conformations shows that the hydration sites observed in the native conformation are still well hydrated in the equilibrium MD ensemble.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amadei A., Linssen A. B., Berendsen H. J. Essential dynamics of proteins. Proteins. 1993 Dec;17(4):412–425. doi: 10.1002/prot.340170408. [DOI] [PubMed] [Google Scholar]
- Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
- Blanco F. J., Jiménez M. A., Pineda A., Rico M., Santoro J., Nieto J. L. NMR solution structure of the isolated N-terminal fragment of protein-G B1 domain. Evidence of trifluoroethanol induced native-like beta-hairpin formation. Biochemistry. 1994 May 17;33(19):6004–6014. doi: 10.1021/bi00185a041. [DOI] [PubMed] [Google Scholar]
- Blanco F. J., Rivas G., Serrano L. A short linear peptide that folds into a native stable beta-hairpin in aqueous solution. Nat Struct Biol. 1994 Sep;1(9):584–590. doi: 10.1038/nsb0994-584. [DOI] [PubMed] [Google Scholar]
- Blanco F. J., Serrano L. Folding of protein G B1 domain studied by the conformational characterization of fragments comprising its secondary structure elements. Eur J Biochem. 1995 Jun 1;230(2):634–649. doi: 10.1111/j.1432-1033.1995.tb20605.x. [DOI] [PubMed] [Google Scholar]
- Blanco F., Ramírez-Alvarado M., Serrano L. Formation and stability of beta-hairpin structures in polypeptides. Curr Opin Struct Biol. 1998 Feb;8(1):107–111. doi: 10.1016/s0959-440x(98)80017-1. [DOI] [PubMed] [Google Scholar]
- Braxenthaler M., Unger R., Auerbach D., Given J. A., Moult J. Chaos in protein dynamics. Proteins. 1997 Dec;29(4):417–425. [PubMed] [Google Scholar]
- Ceruso M. A., Amadei A., Di Nola A. Mechanics and dynamics of B1 domain of protein G: role of packing and surface hydrophobic residues. Protein Sci. 1999 Jan;8(1):147–160. doi: 10.1110/ps.8.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chothia C. Coiling of beta-pleated sheets. J Mol Biol. 1983 Jan 5;163(1):107–117. doi: 10.1016/0022-2836(83)90031-1. [DOI] [PubMed] [Google Scholar]
- Chothia C. Conformation of twisted beta-pleated sheets in proteins. J Mol Biol. 1973 Apr 5;75(2):295–302. doi: 10.1016/0022-2836(73)90022-3. [DOI] [PubMed] [Google Scholar]
- Chou K. C., Némethy G., Scheraga H. A. Role of interchain interactions in the stabilization of the right-handed twist of beta-sheets. J Mol Biol. 1983 Aug 5;168(2):389–407. doi: 10.1016/s0022-2836(83)80025-4. [DOI] [PubMed] [Google Scholar]
- Clore G. M., Gronenborn A. M. Localization of bound water in the solution structure of the immunoglobulin binding domain of streptococcal protein G. Evidence for solvent-induced helical distortion in solution. J Mol Biol. 1992 Feb 20;223(4):853–856. doi: 10.1016/0022-2836(92)90247-h. [DOI] [PubMed] [Google Scholar]
- Daggett V., Levitt M. Protein unfolding pathways explored through molecular dynamics simulations. J Mol Biol. 1993 Jul 20;232(2):600–619. doi: 10.1006/jmbi.1993.1414. [DOI] [PubMed] [Google Scholar]
- Daura X., Jaun B., Seebach D., van Gunsteren W. F., Mark A. E. Reversible peptide folding in solution by molecular dynamics simulation. J Mol Biol. 1998 Jul 31;280(5):925–932. doi: 10.1006/jmbi.1998.1885. [DOI] [PubMed] [Google Scholar]
- Dinner A. R., Lazaridis T., Karplus M. Understanding beta-hairpin formation. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9068–9073. doi: 10.1073/pnas.96.16.9068. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Finkelstein A. V. Can protein unfolding simulate protein folding? Protein Eng. 1997 Aug;10(8):843–845. doi: 10.1093/protein/10.8.843. [DOI] [PubMed] [Google Scholar]
- Gallagher T., Alexander P., Bryan P., Gilliland G. L. Two crystal structures of the B1 immunoglobulin-binding domain of streptococcal protein G and comparison with NMR. Biochemistry. 1994 Apr 19;33(15):4721–4729. [PubMed] [Google Scholar]
- García A. E., Hummer G., Soumpasis D. M. Hydration of an alpha-helical peptide: comparison of theory and molecular dynamics simulation. Proteins. 1997 Apr;27(4):471–480. [PubMed] [Google Scholar]
- Hummer G., García A. E., Soumpasis D. M. A statistical mechanical description of biomolecular hydration. Faraday Discuss. 1996;(103):175–189. doi: 10.1039/fd9960300175. [DOI] [PubMed] [Google Scholar]
- Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
- Levitt M. A simplified representation of protein conformations for rapid simulation of protein folding. J Mol Biol. 1976 Jun 14;104(1):59–107. doi: 10.1016/0022-2836(76)90004-8. [DOI] [PubMed] [Google Scholar]
- Maccallum P. H., Poet R., Milner-White E. J. Coulombic attractions between partially charged main-chain atoms stabilise the right-handed twist found in most beta-strands. J Mol Biol. 1995 Apr 28;248(2):374–384. doi: 10.1016/s0022-2836(95)80057-3. [DOI] [PubMed] [Google Scholar]
- Muñoz V., Henry E. R., Hofrichter J., Eaton W. A. A statistical mechanical model for beta-hairpin kinetics. Proc Natl Acad Sci U S A. 1998 May 26;95(11):5872–5879. doi: 10.1073/pnas.95.11.5872. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muñoz V., Thompson P. A., Hofrichter J., Eaton W. A. Folding dynamics and mechanism of beta-hairpin formation. Nature. 1997 Nov 13;390(6656):196–199. doi: 10.1038/36626. [DOI] [PubMed] [Google Scholar]
- Pande V. S., Rokhsar D. S. Molecular dynamics simulations of unfolding and refolding of a beta-hairpin fragment of protein G. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9062–9067. doi: 10.1073/pnas.96.16.9062. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prévost M., Ortmans I. Refolding simulations of an isolated fragment of barnase into a native-like beta hairpin: evidence for compactness and hydrogen bonding as concurrent stabilizing factors. Proteins. 1997 Oct;29(2):212–227. doi: 10.1002/(sici)1097-0134(199710)29:2<212::aid-prot9>3.0.co;2-e. [DOI] [PubMed] [Google Scholar]
- Pugliese L., Prévost M., Wodak S. J. Unfolding simulations of the 85-102 beta-hairpin of barnase. J Mol Biol. 1995 Aug 18;251(3):432–447. doi: 10.1006/jmbi.1995.0446. [DOI] [PubMed] [Google Scholar]
- Ramírez-Alvarado M., Blanco F. J., Serrano L. De novo design and structural analysis of a model beta-hairpin peptide system. Nat Struct Biol. 1996 Jul;3(7):604–612. doi: 10.1038/nsb0796-604. [DOI] [PubMed] [Google Scholar]
- Salemme F. R. Structural properties of protein beta-sheets. Prog Biophys Mol Biol. 1983;42(2-3):95–133. doi: 10.1016/0079-6107(83)90005-6. [DOI] [PubMed] [Google Scholar]
- Schaefer M., Bartels C., Karplus M. Solution conformations and thermodynamics of structured peptides: molecular dynamics simulation with an implicit solvation model. J Mol Biol. 1998 Dec 4;284(3):835–848. doi: 10.1006/jmbi.1998.2172. [DOI] [PubMed] [Google Scholar]
- Searle M. S., Williams D. H., Packman L. C. A short linear peptide derived from the N-terminal sequence of ubiquitin folds into a water-stable non-native beta-hairpin. Nat Struct Biol. 1995 Nov;2(11):999–1006. doi: 10.1038/nsb1195-999. [DOI] [PubMed] [Google Scholar]
- Sibanda B. L., Blundell T. L., Thornton J. M. Conformation of beta-hairpins in protein structures. A systematic classification with applications to modelling by homology, electron density fitting and protein engineering. J Mol Biol. 1989 Apr 20;206(4):759–777. doi: 10.1016/0022-2836(89)90583-4. [DOI] [PubMed] [Google Scholar]
- Sibanda B. L., Thornton J. M. Conformation of beta hairpins in protein structures: classification and diversity in homologous structures. Methods Enzymol. 1991;202:59–82. doi: 10.1016/0076-6879(91)02007-v. [DOI] [PubMed] [Google Scholar]
- Sieber V., Moe G. R. Interactions contributing to the formation of a beta-hairpin-like structure in a small peptide. Biochemistry. 1996 Jan 9;35(1):181–188. doi: 10.1021/bi950681o. [DOI] [PubMed] [Google Scholar]
- Thompson P. A., Eaton W. A., Hofrichter J. Laser temperature jump study of the helix<==>coil kinetics of an alanine peptide interpreted with a 'kinetic zipper' model. Biochemistry. 1997 Jul 29;36(30):9200–9210. doi: 10.1021/bi9704764. [DOI] [PubMed] [Google Scholar]
- Vriend G. WHAT IF: a molecular modeling and drug design program. J Mol Graph. 1990 Mar;8(1):52-6, 29. doi: 10.1016/0263-7855(90)80070-v. [DOI] [PubMed] [Google Scholar]
- Williams S., Causgrove T. P., Gilmanshin R., Fang K. S., Callender R. H., Woodruff W. H., Dyer R. B. Fast events in protein folding: helix melting and formation in a small peptide. Biochemistry. 1996 Jan 23;35(3):691–697. doi: 10.1021/bi952217p. [DOI] [PubMed] [Google Scholar]
- Yapa K., Weaver D. L., Karplus M. Beta-sheet coil transitions in a simple polypeptide model. Proteins. 1992 Mar;12(3):237–265. doi: 10.1002/prot.340120304. [DOI] [PubMed] [Google Scholar]
- de Groot B. L., van Aalten D. M., Amadei A., Berendsen H. J. The consistency of large concerted motions in proteins in molecular dynamics simulations. Biophys J. 1996 Oct;71(4):1707–1713. doi: 10.1016/S0006-3495(96)79372-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Aalten D. M., Conn D. A., de Groot B. L., Berendsen H. J., Findlay J. B., Amadei A. Protein dynamics derived from clusters of crystal structures. Biophys J. 1997 Dec;73(6):2891–2896. doi: 10.1016/S0006-3495(97)78317-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van der Spoel D., van Buuren A. R., Tieleman D. P., Berendsen H. J. Molecular dynamics simulations of peptides from BPTI: a closer look at amide-aromatic interactions. J Biomol NMR. 1996 Oct;8(3):229–238. doi: 10.1007/BF00410322. [DOI] [PubMed] [Google Scholar]
