Abstract
Outer membrane protein A (OmpA) of Escherichia coli is a beta-barrel membrane protein that unfolds in 8 M urea to a random coil. OmpA refolds upon urea dilution in the presence of certain detergents or lipids. To examine the minimal requirements for secondary and tertiary structure formation in beta-barrel membrane proteins, folding of OmpA was studied as a function of the hydrophobic chain length, the chemical structure of the polar headgroup, and the concentration of a large array of amphiphiles. OmpA folded in the presence of detergents only above a critical minimal chain length of the apolar chain as determined by circular dichroism spectroscopy and a SDS-PAGE assay that measures tertiary structure formation. Details of the chemical structure of the polar headgroup were unimportant for folding. The minimal chain length required for folding correlated with the critical micelle concentration in each detergent series. Therefore, OmpA requires preformed detergent micelles for folding and does not adsorb monomeric detergent to its perimeter after folding. Formation of secondary and tertiary structure is thermodynamically coupled and strictly dependent on the interaction with aggregated amphiphiles.
Full Text
The Full Text of this article is available as a PDF (303.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bailyes E. M., Newby A. C., Siddle K., Luzio J. P. Solubilization and purification of rat liver 5'-nucleotidase by use of a zwitterionic detergent and a monoclonal-antibody immunoadsorbent. Biochem J. 1982 Apr 1;203(1):245–251. doi: 10.1042/bj2030245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bjerrum O. J., Bhakdi S., Rieneck K. Monitoring of detergent binding to amphiphilic proteins by means of micelles containing the hydrophobic dye Sudan Black B. J Biochem Biophys Methods. 1980 Dec;3(6):355–366. doi: 10.1016/0165-022x(80)90044-5. [DOI] [PubMed] [Google Scholar]
- Dornmair K., Kiefer H., Jähnig F. Refolding of an integral membrane protein. OmpA of Escherichia coli. J Biol Chem. 1990 Nov 5;265(31):18907–18911. [PubMed] [Google Scholar]
- Eisele J. L., Rosenbusch J. P. In vitro folding and oligomerization of a membrane protein. Transition of bacterial porin from random coil to native conformation. J Biol Chem. 1990 Jun 25;265(18):10217–10220. [PubMed] [Google Scholar]
- Gonenne A., Ernst R. Solubilization of membrane proteins by sulfobetaines, novel zwitterionic surfactants. Anal Biochem. 1978 Jun 15;87(1):28–38. doi: 10.1016/0003-2697(78)90565-1. [DOI] [PubMed] [Google Scholar]
- Helenius A., McCaslin D. R., Fries E., Tanford C. Properties of detergents. Methods Enzymol. 1979;56:734–749. doi: 10.1016/0076-6879(79)56066-2. [DOI] [PubMed] [Google Scholar]
- Helenius A., Simons K. The binding of detergents to lipophilic and hydrophilic proteins. J Biol Chem. 1972 Jun 10;247(11):3656–3661. [PubMed] [Google Scholar]
- Kleinschmidt J. H., Tamm L. K. Folding intermediates of a beta-barrel membrane protein. Kinetic evidence for a multi-step membrane insertion mechanism. Biochemistry. 1996 Oct 8;35(40):12993–13000. doi: 10.1021/bi961478b. [DOI] [PubMed] [Google Scholar]
- Kleinschmidt J. H., den Blaauwen T., Driessen A. J., Tamm L. K. Outer membrane protein A of Escherichia coli inserts and folds into lipid bilayers by a concerted mechanism. Biochemistry. 1999 Apr 20;38(16):5006–5016. doi: 10.1021/bi982465w. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Le Maire M., Kwee S., Andersen J. P., Møller J. V. Mode of interaction of polyoxyethyleneglycol detergents with membrane proteins. Eur J Biochem. 1983 Jan 1;129(3):525–532. doi: 10.1111/j.1432-1033.1983.tb07080.x. [DOI] [PubMed] [Google Scholar]
- Lund S., Orlowski S., de Foresta B., Champeil P., le Maire M., Møller J. V. Detergent structure and associated lipid as determinants in the stabilization of solubilized Ca2+-ATPase from sarcoplasmic reticulum. J Biol Chem. 1989 Mar 25;264(9):4907–4915. [PubMed] [Google Scholar]
- Makino S., Reynolds J. A., Tanford C. The binding of deoxycholate and Triton X-100 to proteins. J Biol Chem. 1973 Jul 25;248(14):4926–4932. [PubMed] [Google Scholar]
- Makino S., Woolford J. L., Jr, Tanford C., Webster R. E. Interaction of deoxycholate and of detergents with the coat protein of bacteriophage f1. J Biol Chem. 1975 Jun 10;250(11):4327–4332. [PubMed] [Google Scholar]
- Møller J. V., le Maire M. Detergent binding as a measure of hydrophobic surface area of integral membrane proteins. J Biol Chem. 1993 Sep 5;268(25):18659–18672. [PubMed] [Google Scholar]
- Nozaki Y., Reynolds J. A., Tanford C. The interaction of a cationic detergent with bovine serum albumin and other proteins. J Biol Chem. 1974 Jul 25;249(14):4452–4459. [PubMed] [Google Scholar]
- Pautsch A., Schulz G. E. Structure of the outer membrane protein A transmembrane domain. Nat Struct Biol. 1998 Nov;5(11):1013–1017. doi: 10.1038/2983. [DOI] [PubMed] [Google Scholar]
- Robinson N. C., Tanford C. The binding of deoxycholate, Triton X-100, sodium dodecyl sulfate, and phosphatidylcholine vesicles to cytochrome b5. Biochemistry. 1975 Jan 28;14(2):369–378. doi: 10.1021/bi00673a025. [DOI] [PubMed] [Google Scholar]
- Rosenbusch J. P. The critical role of detergents in the crystallization of membrane proteins. J Struct Biol. 1990 Jul-Sep;104(1-3):134–138. doi: 10.1016/1047-8477(90)90068-n. [DOI] [PubMed] [Google Scholar]
- Schweizer M., Hindennach I., Garten W., Henning U. Major proteins of the Escherichia coli outer cell envelope membrane. Interaction of protein II with lipopolysaccharide. Eur J Biochem. 1978 Jan 2;82(1):211–217. doi: 10.1111/j.1432-1033.1978.tb12013.x. [DOI] [PubMed] [Google Scholar]
- Sugawara E., Steiert M., Rouhani S., Nikaido H. Secondary structure of the outer membrane proteins OmpA of Escherichia coli and OprF of Pseudomonas aeruginosa. J Bacteriol. 1996 Oct;178(20):6067–6069. doi: 10.1128/jb.178.20.6067-6069.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Surrey T., Jähnig F. Refolding and oriented insertion of a membrane protein into a lipid bilayer. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7457–7461. doi: 10.1073/pnas.89.16.7457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanford C., Reynolds J. A. Characterization of membrane proteins in detergent solutions. Biochim Biophys Acta. 1976 Oct 26;457(2):133–170. doi: 10.1016/0304-4157(76)90009-5. [DOI] [PubMed] [Google Scholar]
- Tausk R. J., Karmiggelt J., Oudshoorn C., Overbeek J. T. Physical chemical studies of short-chain lecithin homologues. I. Influence of the chain length of the fatty acid ester and of electrolytes on the critical micelle concentration. Biophys Chem. 1974 Feb;1(3):175–183. doi: 10.1016/0301-4622(74)80004-9. [DOI] [PubMed] [Google Scholar]
- Vogel H., Jähnig F. Models for the structure of outer-membrane proteins of Escherichia coli derived from raman spectroscopy and prediction methods. J Mol Biol. 1986 Jul 20;190(2):191–199. doi: 10.1016/0022-2836(86)90292-5. [DOI] [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]