Abstract
Although the three-dimensional structure of the dimeric class 3 rat aldehyde dehydrogenase has recently been published (Liu ZJ et al., 1997, Nature Struct Biol 4:317-326), few mechanistic studies have been conducted on this isoenzyme. We have characterized the enzymatic properties of recombinant class 3 human stomach aldehyde dehydrogenase, which is very similar in amino acid sequence to the class 3 rat aldehyde dehydrogenase. We have determined that the rate-limiting step for the human class 3 isozyme is hydride transfer rather than deacylation as observed for the human liver class 2 mitochondrial enzyme. No enhancement of NADH fluorescence was observed upon binding to the class 3 enzyme, while fluorescence enhancement of NADH has been previously observed upon binding to the class 2 isoenzyme. It was also observed that binding of the NAD cofactor inhibited the esterase activity of the class 3 enzyme while activating the esterase activity of the class 2 enzyme. Site-directed mutagenesis of two conserved glutamic acid residues (209 and 333) to glutamine residues indicated that, unlike in the class 2 enzyme, Glu333 served as the general base in the catalytic reaction and E209Q had only marginal effects on enzyme activity, thus confirming the proposed mechanism (Hempel J et al., 1999, Adv Exp Med Biol 436:53-59). Together, these data suggest that even though the subunit structures and active site residues of the isozymes are similar, the enzymes have very distinct properties besides their oligomeric state (dimer vs. tetramer) and substrate specificity.
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Delabar J. M., Martin S. R., Bayley P. M. The binding of NADH and NADPH to bovine-liver glutamate dehydrogenase. Spectroscopic characterisation. Eur J Biochem. 1982 Oct;127(2):367–374. doi: 10.1111/j.1432-1033.1982.tb06881.x. [DOI] [PubMed] [Google Scholar]
- Dockham P. A., Lee M. O., Sladek N. E. Identification of human liver aldehyde dehydrogenases that catalyze the oxidation of aldophosphamide and retinaldehyde. Biochem Pharmacol. 1992 Jun 9;43(11):2453–2469. doi: 10.1016/0006-2952(92)90326-e. [DOI] [PubMed] [Google Scholar]
- Farrés J., Wang T. T., Cunningham S. J., Weiner H. Investigation of the active site cysteine residue of rat liver mitochondrial aldehyde dehydrogenase by site-directed mutagenesis. Biochemistry. 1995 Feb 28;34(8):2592–2598. doi: 10.1021/bi00008a025. [DOI] [PubMed] [Google Scholar]
- Farrés J., Wang X., Takahashi K., Cunningham S. J., Wang T. T., Weiner H. Effects of changing glutamate 487 to lysine in rat and human liver mitochondrial aldehyde dehydrogenase. A model to study human (Oriental type) class 2 aldehyde dehydrogenase. J Biol Chem. 1994 May 13;269(19):13854–13860. [PubMed] [Google Scholar]
- Feldman R. I., Weiner H. Horse liver aldehyde dehydrogenase. II. Kinetics and mechanistic implications of the dehydrogenase and esterase activity. J Biol Chem. 1972 Jan 10;247(1):267–272. [PubMed] [Google Scholar]
- Hempel J., Perozich J., Chapman T., Rose J., Boesch J. S., Liu Z. J., Lindahl R., Wang B. C. Aldehyde dehydrogenase catalytic mechanism. A proposal. Adv Exp Med Biol. 1999;463:53–59. doi: 10.1007/978-1-4615-4735-8_7. [DOI] [PubMed] [Google Scholar]
- Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
- Hsu L. C., Chang W. C., Shibuya A., Yoshida A. Human stomach aldehyde dehydrogenase cDNA and genomic cloning, primary structure, and expression in Escherichia coli. J Biol Chem. 1992 Feb 15;267(5):3030–3037. [PubMed] [Google Scholar]
- Hönes G., Hönes J., Hauser M. Studies of enzyme-ligand complexes using dynamic fluorescence anisotropy. II. The coenzyme-binding site of malate dehydrogenase. Biol Chem Hoppe Seyler. 1986 Feb;367(2):103–108. doi: 10.1515/bchm3.1986.367.1.103. [DOI] [PubMed] [Google Scholar]
- Iweibo I., Weiner H. Coenzyme interaction with horse liver alcohol dehydrogenase. Evidence for allosteric coenzyme binding sites from thermodynamic equilibrium studies. J Biol Chem. 1975 Mar 25;250(6):1959–1965. [PubMed] [Google Scholar]
- Johansson K., El-Ahmad M., Ramaswamy S., Hjelmqvist L., Jörnvall H., Eklund H. Structure of betaine aldehyde dehydrogenase at 2.1 A resolution. Protein Sci. 1998 Oct;7(10):2106–2117. doi: 10.1002/pro.5560071007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kasher M. S., Wakulchik M., Cook J. A., Smith M. C. One-step purification of recombinant human papillomavirus type 16 E7 oncoprotein and its binding to the retinoblastoma gene product. Biotechniques. 1993 Apr;14(4):630–641. [PubMed] [Google Scholar]
- Kitson K. E., Blythe T. J. The hunt for a retinal-specific aldehyde dehydrogenase in sheep liver. Adv Exp Med Biol. 1999;463:213–221. doi: 10.1007/978-1-4615-4735-8_26. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Liu Z. J., Sun Y. J., Rose J., Chung Y. J., Hsiao C. D., Chang W. R., Kuo I., Perozich J., Lindahl R., Hempel J. The first structure of an aldehyde dehydrogenase reveals novel interactions between NAD and the Rossmann fold. Nat Struct Biol. 1997 Apr;4(4):317–326. doi: 10.1038/nsb0497-317. [DOI] [PubMed] [Google Scholar]
- Luisi P. L., Baici A., Bonner F. J., Aboderin A. A. Relationship between fluorescence and conformation of epsilonNAD+ bound to dehydrogenases. Biochemistry. 1975 Jan 28;14(2):362–368. doi: 10.1021/bi00673a024. [DOI] [PubMed] [Google Scholar]
- Mierendorf R. C., Percy C., Young R. A. Gene isolation by screening lambda gt11 libraries with antibodies. Methods Enzymol. 1987;152:458–469. doi: 10.1016/0076-6879(87)52054-7. [DOI] [PubMed] [Google Scholar]
- Moore S. A., Baker H. M., Blythe T. J., Kitson K. E., Kitson T. M., Baker E. N. Sheep liver cytosolic aldehyde dehydrogenase: the structure reveals the basis for the retinal specificity of class 1 aldehyde dehydrogenases. Structure. 1998 Dec 15;6(12):1541–1551. doi: 10.1016/s0969-2126(98)00152-x. [DOI] [PubMed] [Google Scholar]
- Ni L., Sheikh S., Weiner H. Involvement of glutamate 399 and lysine 192 in the mechanism of human liver mitochondrial aldehyde dehydrogenase. J Biol Chem. 1997 Jul 25;272(30):18823–18826. doi: 10.1074/jbc.272.30.18823. [DOI] [PubMed] [Google Scholar]
- Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
- Pietruszko R., Blatter E., Abriola D. P., Prestwich G. Localization of cysteine 302 at the active site of aldehyde dehydrogenase. Adv Exp Med Biol. 1991;284:19–30. doi: 10.1007/978-1-4684-5901-2_4. [DOI] [PubMed] [Google Scholar]
- Sayle R. A., Milner-White E. J. RASMOL: biomolecular graphics for all. Trends Biochem Sci. 1995 Sep;20(9):374–374. doi: 10.1016/s0968-0004(00)89080-5. [DOI] [PubMed] [Google Scholar]
- Scheek R. M., Berden J. A., Hooghiemstra R., Slater E. C. Subunit interactions in rabbit-muscle glyceraldehyde-phosphate dehydrogenase, as measured by NAD+ and NADH binding. Biochim Biophys Acta. 1979 Aug 15;569(2):124–134. doi: 10.1016/0005-2744(79)90047-0. [DOI] [PubMed] [Google Scholar]
- Sheikh S., Ni L., Hurley T. D., Weiner H. The potential roles of the conserved amino acids in human liver mitochondrial aldehyde dehydrogenase. J Biol Chem. 1997 Jul 25;272(30):18817–18822. doi: 10.1074/jbc.272.30.18817. [DOI] [PubMed] [Google Scholar]
- Skarzyński T., Moody P. C., Wonacott A. J. Structure of holo-glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus at 1.8 A resolution. J Mol Biol. 1987 Jan 5;193(1):171–187. doi: 10.1016/0022-2836(87)90635-8. [DOI] [PubMed] [Google Scholar]
- Sreerama L., Sladek N. E. Identification and characterization of a novel class 3 aldehyde dehydrogenase overexpressed in a human breast adenocarcinoma cell line exhibiting oxazaphosphorine-specific acquired resistance. Biochem Pharmacol. 1993 Jun 22;45(12):2487–2505. doi: 10.1016/0006-2952(93)90231-k. [DOI] [PubMed] [Google Scholar]
- Steinmetz C. G., Xie P., Weiner H., Hurley T. D. Structure of mitochondrial aldehyde dehydrogenase: the genetic component of ethanol aversion. Structure. 1997 May 15;5(5):701–711. doi: 10.1016/s0969-2126(97)00224-4. [DOI] [PubMed] [Google Scholar]
- Svanas G. W., Weiner H. Aldehyde dehydrogenase activity as the rate-limiting factor for acetaldehyde metabolism in rat liver. Arch Biochem Biophys. 1985 Jan;236(1):36–46. doi: 10.1016/0003-9861(85)90603-4. [DOI] [PubMed] [Google Scholar]
- Takahashi K., Weiner H. Nicotinamide adenine dinucleotide activation of the esterase reaction of horse liver aldehyde dehydrogenase. Biochemistry. 1981 May 12;20(10):2720–2726. doi: 10.1021/bi00513a003. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang S. L., Wu C. W., Cheng T. C., Yin S. J. Isolation of high-Km aldehyde dehydrogenase isoenzymes from human gastric mucosa. Biochem Int. 1990 Oct;22(2):199–204. [PubMed] [Google Scholar]
- Wang X., Weiner H. Involvement of glutamate 268 in the active site of human liver mitochondrial (class 2) aldehyde dehydrogenase as probed by site-directed mutagenesis. Biochemistry. 1995 Jan 10;34(1):237–243. doi: 10.1021/bi00001a028. [DOI] [PubMed] [Google Scholar]
- Weiner H., Hu J. H., Sanny C. G. Rate-limiting steps for the esterase and dehydrogenase reaction catalyzed by horse liver aldehyde dehydrogenase. J Biol Chem. 1976 Jul 10;251(13):3853–3855. [PubMed] [Google Scholar]
- White J. L., Hackert M. L., Buehner M., Adams M. J., Ford G. C., Lentz P. J., Jr, Smiley I. E., Steindel S. J., Rossmann M. G. A comparison of the structures of apo dogfish M4 lactate dehydrogenase and its ternary complexes. J Mol Biol. 1976 Apr 25;102(4):759–779. doi: 10.1016/0022-2836(76)90290-4. [DOI] [PubMed] [Google Scholar]
- Yin S. J., Liao C. S., Wang S. L., Chen Y. J., Wu C. W. Kinetic evidence for human liver and stomach aldehyde dehydrogenase-3 representing an unique class of isozymes. Biochem Genet. 1989 Jun;27(5-6):321–331. doi: 10.1007/BF00554167. [DOI] [PubMed] [Google Scholar]
- Zheng C. F., Wang T. T., Weiner H. Cloning and expression of the full-length cDNAS encoding human liver class 1 and class 2 aldehyde dehydrogenase. Alcohol Clin Exp Res. 1993 Aug;17(4):828–831. doi: 10.1111/j.1530-0277.1993.tb00849.x. [DOI] [PubMed] [Google Scholar]
