Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Oct;8(10):2010–2018. doi: 10.1110/ps.8.10.2010

Pig heart short chain L-3-hydroxyacyl-CoA dehydrogenase revisited: sequence analysis and crystal structure determination.

J J Barycki 1, L K O'Brien 1, J J Birktoft 1, A W Strauss 1, L J Banaszak 1
PMCID: PMC2144142  PMID: 10548046

Abstract

Short chain L-3-hydroxyacyl CoA dehydrogenase (SCHAD) is a soluble dimeric enzyme critical for oxidative metabolism of fatty acids. Its primary sequence has been reported to be conserved across numerous tissues and species with the notable exception of the pig heart homologue. Preliminary efforts to solve the crystal structure of the dimeric pig heart SCHAD suggested the unprecedented occurrence of three enzyme subunits within the asymmetric unit, a phenomenon that was thought to have hampered refinement of the initial chain tracing. The recently solved crystal coordinates of human heart SCHAD facilitated a molecular replacement solution to the pig heart SCHAD data. Refinement of the model, in conjunction with the nucleotide sequence for pig heart SCHAD determined in this paper, has demonstrated that the previously published pig heart SCHAD sequence was incorrect. Presented here are the corrected amino acid sequence and the high resolution crystal structure determined for pig heart SCHAD complexed with its NAD+ cofactor (2.8 A; R(cryst) = 22.4%, R(free) = 28.8%). In addition, the peculiar phenomenon of a dimeric enzyme crystallizing with three subunits contained in the asymmetric unit is described.

Full Text

The Full Text of this article is available as a PDF (808.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barycki J. J., O'Brien L. K., Bratt J. M., Zhang R., Sanishvili R., Strauss A. W., Banaszak L. J. Biochemical characterization and crystal structure determination of human heart short chain L-3-hydroxyacyl-CoA dehydrogenase provide insights into catalytic mechanism. Biochemistry. 1999 May 4;38(18):5786–5798. doi: 10.1021/bi9829027. [DOI] [PubMed] [Google Scholar]
  2. Bennett M. J., Weinberger M. J., Kobori J. A., Rinaldo P., Burlina A. B. Mitochondrial short-chain L-3-hydroxyacyl-coenzyme A dehydrogenase deficiency: a new defect of fatty acid oxidation. Pediatr Res. 1996 Jan;39(1):185–188. doi: 10.1203/00006450-199601000-00031. [DOI] [PubMed] [Google Scholar]
  3. Birktoft J. J., Holden H. M., Hamlin R., Xuong N. H., Banaszak L. J. Structure of L-3-hydroxyacyl-coenzyme A dehydrogenase: preliminary chain tracing at 2.8-A resolution. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8262–8266. doi: 10.1073/pnas.84.23.8262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bitar K. G., Perez-Aranda A., Bradshaw R. A. Amino acid sequence of L-3-hydroxyacyl CoA dehydrogenase from pig heart muscle. FEBS Lett. 1980 Jul 28;116(2):196–198. doi: 10.1016/0014-5793(80)80642-9. [DOI] [PubMed] [Google Scholar]
  5. Brünger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M., Pannu N. S. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905–921. doi: 10.1107/s0907444998003254. [DOI] [PubMed] [Google Scholar]
  6. Furuta S., Kobayashi A., Miyazawa S., Hashimoto T. Cloning and expression of cDNA for a newly identified isozyme of bovine liver 3-hydroxyacyl-CoA dehydrogenase and its import into mitochondria. Biochim Biophys Acta. 1997 Feb 28;1350(3):317–324. doi: 10.1016/s0167-4781(96)00171-6. [DOI] [PubMed] [Google Scholar]
  7. Guenther B. D., Sheppard C. A., Tran P., Rozen R., Matthews R. G., Ludwig M. L. The structure and properties of methylenetetrahydrofolate reductase from Escherichia coli suggest how folate ameliorates human hyperhomocysteinemia. Nat Struct Biol. 1999 Apr;6(4):359–365. doi: 10.1038/7594. [DOI] [PubMed] [Google Scholar]
  8. Hartmann D., Philipp R., Schmadel K., Birktoft J. J., Banaszak L. J., Trommer W. E. Spatial arrangement of coenzyme and substrates bound to L-3-hydroxyacyl-CoA dehydrogenase as studied by spin-labeled analogues of NAD+ and CoA. Biochemistry. 1991 Mar 19;30(11):2782–2790. doi: 10.1021/bi00225a007. [DOI] [PubMed] [Google Scholar]
  9. He X. Y., Yang S. Y. Histidine-450 is the catalytic residue of L-3-hydroxyacyl coenzyme A dehydrogenase associated with the large alpha-subunit of the multienzyme complex of fatty acid oxidation from Escherichia coli. Biochemistry. 1996 Jul 23;35(29):9625–9630. doi: 10.1021/bi960374y. [DOI] [PubMed] [Google Scholar]
  10. He X. Y., Yang S. Y. Molecular cloning, expression in Escherichia coli, and characterization of a novel L-3-hydroxyacyl coenzyme A dehydrogenase from pig liver. Biochim Biophys Acta. 1998 May 20;1392(1):119–126. doi: 10.1016/s0005-2760(98)00031-9. [DOI] [PubMed] [Google Scholar]
  11. He X. Y., Zhang G., Blecha F., Yang S. Y. Identity of heart and liver L-3-hydroxyacyl coenzyme A dehydrogenase. Biochim Biophys Acta. 1999 Feb 25;1437(2):119–123. doi: 10.1016/s1388-1981(98)00005-5. [DOI] [PubMed] [Google Scholar]
  12. Holden H. M., Banaszak L. J. L-3-hydroxyacyl coenzyme A dehydrogenase. The location of NAD binding sites and the bilobal subunit structure. J Biol Chem. 1983 Feb 25;258(4):2383–2389. [PubMed] [Google Scholar]
  13. Isaacs J. D., Jr, Sims H. F., Powell C. K., Bennett M. J., Hale D. E., Treem W. R., Strauss A. W. Maternal acute fatty liver of pregnancy associated with fetal trifunctional protein deficiency: molecular characterization of a novel maternal mutant allele. Pediatr Res. 1996 Sep;40(3):393–398. doi: 10.1203/00006450-199609000-00005. [DOI] [PubMed] [Google Scholar]
  14. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  15. Kobayashi A., Jiang L. L., Hashimoto T. Two mitochondrial 3-hydroxyacyl-CoA dehydrogenases in bovine liver. J Biochem. 1996 Apr;119(4):775–782. doi: 10.1093/oxfordjournals.jbchem.a021307. [DOI] [PubMed] [Google Scholar]
  16. Laskowski R. A., Moss D. S., Thornton J. M. Main-chain bond lengths and bond angles in protein structures. J Mol Biol. 1993 Jun 20;231(4):1049–1067. doi: 10.1006/jmbi.1993.1351. [DOI] [PubMed] [Google Scholar]
  17. Mittl P. R., Schulz G. E. Structure of glutathione reductase from Escherichia coli at 1.86 A resolution: comparison with the enzyme from human erythrocytes. Protein Sci. 1994 May;3(5):799–809. doi: 10.1002/pro.5560030509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Noyes B. E., Bradshaw R. A. L-3-hydroxyacyl coenzyme A dehydrogenase from pig heart muscle. I. Purification and properties. J Biol Chem. 1973 May 10;248(9):3052–3059. [PubMed] [Google Scholar]
  19. Noyes B. E., Glatthaar B. E., Garavelli J. S., Bradshaw R. A. Structural and functional similarities between mitochondrial malate dehydrogenase and L-3-hydroxyacyl CoA dehydrogenase. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1334–1338. doi: 10.1073/pnas.71.4.1334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pons R., Roig M., Riudor E., Ribes A., Briones P., Ortigosa L., Baldellou A., Gil-Gibernau J., Olesti M., Navarro C. The clinical spectrum of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Pediatr Neurol. 1996 Apr;14(3):236–243. doi: 10.1016/0887-8994(96)00021-5. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES