Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Oct;8(10):2194–2204. doi: 10.1110/ps.8.10.2194

Crystal structure of the EF-hand parvalbumin at atomic resolution (0.91 A) and at low temperature (100 K). Evidence for conformational multistates within the hydrophobic core.

J P Declercq 1, C Evrard 1, V Lamzin 1, J Parello 1
PMCID: PMC2144143  PMID: 10548066

Abstract

Several crystal structures of parvalbumin (Parv), a typical EF-hand protein, have been reported so far for different species with the best resolution achieving 1.5 A. Using a crystal grown under microgravity conditions, cryotechniques (100 K), and synchrotron radiation, it has now been possible to determine the crystal structure of the fully Ca2+-loaded form of pike (component pI 4.10) Parv.Ca2 at atomic resolution (0.91 A). The availability of such a high quality structure offers the opportunity to contribute to the definition of the validation tools useful for the refinement of protein crystal structures determined to lower resolution. Besides a better definition of most of the elements in the protein three-dimensional structure than in previous studies, the high accuracy thus achieved allows the detection of well-defined alternate conformations, which are observed for 16 residues out of 107 in total. Among them, six occupy an internal position within the hydrophobic core and converge toward two small buried cavities with a total volume of about 60 A3. There is no indication of any water molecule present in these cavities. It is probable that at temperatures of physiological conditions there is a dynamic interconversion between these alternate conformations in an energy-barrier dependent manner. Such motions for which the amplitudes are provided by the present study will be associated with a time-dependent remodeling of the void internal space as part of a slow dynamics regime (millisecond timescales) of the parvalbumin molecule. The relevance of such internal dynamics to function is discussed.

Full Text

The Full Text of this article is available as a PDF (562.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allouche D., Parello J., Sanejouand Y. H. Ca2+/Mg2+ exchange in parvalbumin and other EF-hand proteins. A theoretical study. J Mol Biol. 1999 Jan 15;285(2):857–873. doi: 10.1006/jmbi.1998.2329. [DOI] [PubMed] [Google Scholar]
  2. Andersson M., Malmendal A., Linse S., Ivarsson I., Forsén S., Svensson L. A. Structural basis for the negative allostery between Ca(2+)- and Mg(2+)-binding in the intracellular Ca(2+)-receptor calbindin D9k. Protein Sci. 1997 Jun;6(6):1139–1147. doi: 10.1002/pro.5560060602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berchtold M. W., Celio M. R., Heizmann C. W. Parvalbumin in human brain. J Neurochem. 1985 Jul;45(1):235–239. doi: 10.1111/j.1471-4159.1985.tb05498.x. [DOI] [PubMed] [Google Scholar]
  4. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  5. Brodersen D. E., Etzerodt M., Madsen P., Celis J. E., Thøgersen H. C., Nyborg J., Kjeldgaard M. EF-hands at atomic resolution: the structure of human psoriasin (S100A7) solved by MAD phasing. Structure. 1998 Apr 15;6(4):477–489. doi: 10.1016/s0969-2126(98)00049-5. [DOI] [PubMed] [Google Scholar]
  6. Cave A., Dobson C. M., Parello J., Williams R. J. Conformation mobility within the structure of muscular parvalbumins. An NMR study of the aromatic resonances of phenylalanine residues. FEBS Lett. 1976 Jun 1;65(2):190–194. doi: 10.1016/0014-5793(76)80477-2. [DOI] [PubMed] [Google Scholar]
  7. Celio M. R. Parvalbumin in most gamma-aminobutyric acid-containing neurons of the rat cerebral cortex. Science. 1986 Feb 28;231(4741):995–997. doi: 10.1126/science.3945815. [DOI] [PubMed] [Google Scholar]
  8. Declercq J. P., Tinant B., Parello J., Etienne G., Huber R. Crystal structure determination and refinement of pike 4.10 parvalbumin (minor component from Esox lucius). J Mol Biol. 1988 Jul 20;202(2):349–353. doi: 10.1016/0022-2836(88)90464-0. [DOI] [PubMed] [Google Scholar]
  9. Declercq J. P., Tinant B., Parello J., Rambaud J. Ionic interactions with parvalbumins. Crystal structure determination of pike 4.10 parvalbumin in four different ionic environments. J Mol Biol. 1991 Aug 20;220(4):1017–1039. doi: 10.1016/0022-2836(91)90369-h. [DOI] [PubMed] [Google Scholar]
  10. Declercq J. P., Tinant B., Parello J. X-ray structure of a new crystal form of pike 4.10 beta parvalbumin. Acta Crystallogr D Biol Crystallogr. 1996 Jan 1;52(Pt 1):165–169. doi: 10.1107/S0907444995010006. [DOI] [PubMed] [Google Scholar]
  11. Dodson E. J., Davies G. J., Lamzin V. S., Murshudov G. N., Wilson K. S. Validation tools: can they indicate the information content of macromolecular crystal structures? Structure. 1998 Jun 15;6(6):685–690. doi: 10.1016/S0969-2126(98)00070-7. [DOI] [PubMed] [Google Scholar]
  12. Gelin B. R., Karplus M. Sidechain torsional potentials and motion of amino acids in porteins: bovine pancreatic trypsin inhibitor. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2002–2006. doi: 10.1073/pnas.72.6.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hooft R. W., Vriend G., Sander C., Abola E. E. Errors in protein structures. Nature. 1996 May 23;381(6580):272–272. doi: 10.1038/381272a0. [DOI] [PubMed] [Google Scholar]
  14. Hou T. T., Johnson J. D., Rall J. A. Effect of temperature on relaxation rate and Ca2+, Mg2+ dissociation rates from parvalbumin of frog muscle fibres. J Physiol. 1992 Apr;449:399–410. doi: 10.1113/jphysiol.1992.sp019092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  16. Kawasaki H., Kretsinger R. H. Calcium-binding proteins. 1: EF-hands. Protein Profile. 1994;1(4):343–517. [PubMed] [Google Scholar]
  17. Kleywegt G. J., Jones T. A. Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallogr D Biol Crystallogr. 1994 Mar 1;50(Pt 2):178–185. doi: 10.1107/S0907444993011333. [DOI] [PubMed] [Google Scholar]
  18. Kleywegt G. J., Jones T. A. Efficient rebuilding of protein structures. Acta Crystallogr D Biol Crystallogr. 1996 Jul 1;52(Pt 4):829–832. doi: 10.1107/S0907444996001783. [DOI] [PubMed] [Google Scholar]
  19. Kretsinger R. H., Nockolds C. E. Carp muscle calcium-binding protein. II. Structure determination and general description. J Biol Chem. 1973 May 10;248(9):3313–3326. [PubMed] [Google Scholar]
  20. Kumar V. D., Lee L., Edwards B. F. Refined crystal structure of calcium-liganded carp parvalbumin 4.25 at 1.5-A resolution. Biochemistry. 1990 Feb 13;29(6):1404–1412. doi: 10.1021/bi00458a010. [DOI] [PubMed] [Google Scholar]
  21. Lamzin V. S., Wilson K. S. Automated refinement of protein models. Acta Crystallogr D Biol Crystallogr. 1993 Jan 1;49(Pt 1):129–147. doi: 10.1107/S0907444992008886. [DOI] [PubMed] [Google Scholar]
  22. Opella S. J., Nelson D. J., Jardetzyk O. Letter: Carbon magnetic resonance study of the conformational changes in carp muscle calcium binding parvalbumin. J Am Chem Soc. 1974 Oct 30;96(22):7157–7159. doi: 10.1021/ja00829a084. [DOI] [PubMed] [Google Scholar]
  23. Parello J., Péchère J. F. Conformational studies on muscular parvalbumins. I. Optical rotatory dispersion and circular dichroism analysis. Biochimie. 1971;53(10):1079–1083. doi: 10.1016/s0300-9084(71)80196-7. [DOI] [PubMed] [Google Scholar]
  24. Roquet F., Declercq J. P., Tinant B., Rambaud J., Parello J. Crystal structure of the unique parvalbumin component from muscle of the leopard shark (Triakis semifasciata). The first X-ray study of an alpha-parvalbumin. J Mol Biol. 1992 Feb 5;223(3):705–720. doi: 10.1016/0022-2836(92)90985-s. [DOI] [PubMed] [Google Scholar]
  25. Schäfer B. W., Heizmann C. W. The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci. 1996 Apr;21(4):134–140. doi: 10.1016/s0968-0004(96)80167-8. [DOI] [PubMed] [Google Scholar]
  26. Strynadka N. C., James M. N. Crystal structures of the helix-loop-helix calcium-binding proteins. Annu Rev Biochem. 1989;58:951–998. doi: 10.1146/annurev.bi.58.070189.004511. [DOI] [PubMed] [Google Scholar]
  27. Swain A. L., Kretsinger R. H., Amma E. L. Restrained least squares refinement of native (calcium) and cadmium-substituted carp parvalbumin using X-ray crystallographic data at 1.6-A resolution. J Biol Chem. 1989 Oct 5;264(28):16620–16628. [PubMed] [Google Scholar]
  28. White H. D. Kinetic mechanism of calcium binding to whiting parvalbumin. Biochemistry. 1988 May 3;27(9):3357–3365. doi: 10.1021/bi00409a036. [DOI] [PubMed] [Google Scholar]
  29. Zanotti J. M., Bellissent-Funel M. C., Parello J. Hydration-coupled dynamics in proteins studied by neutron scattering and NMR: the case of the typical EF-hand calcium-binding parvalbumin. Biophys J. 1999 May;76(5):2390–2411. doi: 10.1016/S0006-3495(99)77395-9. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES