Abstract
N5-(L-1-carboxyethyl)-L-ornithine synthase [E.C. 1.5.1.24] (CEOS) from Lactococcus lactis has been cloned, expressed, and purified from Escherichia coli in quantities sufficient for characterization by biophysical methods. The NADPH-dependent enzyme is a homotetramer (Mr approximately equal to 140,000) and in the native state is stabilized by noncovalent interactions between the monomers. The far-ultraviolet circular dichroism spectrum shows that the folding pattern of the enzyme is typical of the alpha,beta family of proteins. CEOS contains one tryptophan (Trp) and 19 tyrosines (Tyr) per monomer, and the fluorescence spectrum of the protein shows emission from both Trp and Tyr residues. Relative to N-acetyltyrosinamide, the Tyr quantum yield of the native enzyme is about 0.5. All 19 Tyr residues are titratable and, of these, two exhibit the uncommonly low pKa of approximately 8.5, 11 have pKa approximately 10.75, and the remaining six titrate with pKa approximately 11.3. The two residues with pKa approximately 8.5 contribute approximately 40% of the total tyrosine emission, implying a relative quantum yield >1, probably indicating Tyr-Tyr energy transfer. In the presence of NADPH, Tyr fluorescence is reduced by 40%, and Trp fluorescence is quenched completely. The latter result suggests that the single Trp residue is either at the active site, or in proximity to the sequence GSGNVA, that constitutes the beta alphabeta fold of the nucleotide-binding domain. Chymotrypsin specifically cleaves native CEOS after Phe255. Although inactivated by this single-site cleavage of the subunit, the enzyme retains the capacity to bind NADPH and tetramer stability is maintained. Possible roles in catalysis for the chymotrypsin sensitive loop and for the low pKa Tyr residues are discussed.
Full Text
The Full Text of this article is available as a PDF (321.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altamirano M. M., Hernandez-Arana A., Tello-Solis S., Calcagno M. L. Spectrochemical evidence for the presence of a tyrosine residue in the allosteric site of glucosamine-6-phosphate deaminase from Escherichia coli. Eur J Biochem. 1994 Mar 1;220(2):409–413. doi: 10.1111/j.1432-1033.1994.tb18638.x. [DOI] [PubMed] [Google Scholar]
- Atkins W. M., Wang R. W., Bird A. W., Newton D. J., Lu A. Y. The catalytic mechanism of glutathione S-transferase (GST). Spectroscopic determination of the pKa of Tyr-9 in rat alpha 1-1 GST. J Biol Chem. 1993 Sep 15;268(26):19188–19191. [PubMed] [Google Scholar]
- Britton K. L., Asano Y., Rice D. W. Crystal structure and active site location of N-(1-D-carboxylethyl)-L-norvaline dehydrogenase. Nat Struct Biol. 1998 Jul;5(7):593–601. doi: 10.1038/854. [DOI] [PubMed] [Google Scholar]
- Chang C. T., Wu C. S., Yang J. T. Circular dichroic analysis of protein conformation: inclusion of the beta-turns. Anal Biochem. 1978 Nov;91(1):13–31. doi: 10.1016/0003-2697(78)90812-6. [DOI] [PubMed] [Google Scholar]
- Chapman K. T., Kopka I. E., Durette P. L., Esser C. K., Lanza T. J., Izquierdo-Martin M., Niedzwiecki L., Chang B., Harrison R. K., Kuo D. W. Inhibition of matrix metalloproteinases by N-carboxyalkyl peptides. J Med Chem. 1993 Dec 24;36(26):4293–4301. doi: 10.1021/jm00078a019. [DOI] [PubMed] [Google Scholar]
- Dietze E. C., Wang R. W., Lu A. Y., Atkins W. M. Ligand effects on the fluorescence properties of tyrosine-9 in alpha 1-1 glutathione S-transferase. Biochemistry. 1996 May 28;35(21):6745–6753. doi: 10.1021/bi9530346. [DOI] [PubMed] [Google Scholar]
- Donkersloot J. A., Thompson J. Cloning, expression, sequence analysis, and site-directed mutagenesis of the Tn5306-encoded N5-(carboxyethyl)ornithine synthase from Lactococcus lactis K1. J Biol Chem. 1995 May 19;270(20):12226–12234. doi: 10.1074/jbc.270.20.12226. [DOI] [PubMed] [Google Scholar]
- Eisinger J. Intramolecular energy transfer in adrenocorticotropin. Biochemistry. 1969 Oct;8(10):3902–3908. doi: 10.1021/bi00838a004. [DOI] [PubMed] [Google Scholar]
- Giancotti V., Quadrifoglio F., Cowgill R. W., Crane-Robinson C. Fluorescence of buried tyrosine residues in proteins. Biochim Biophys Acta. 1980 Jul 24;624(1):60–65. doi: 10.1016/0005-2795(80)90225-1. [DOI] [PubMed] [Google Scholar]
- Inada Y., Blombäck B. Four states of tyrosine residues in the fibrinogen molecule. Biochim Biophys Acta. 1978 Mar 28;533(1):74–79. doi: 10.1016/0005-2795(78)90549-4. [DOI] [PubMed] [Google Scholar]
- Karshikoff A., Reinemer P., Huber R., Ladenstein R. Electrostatic evidence for the activation of the glutathione thiol by Tyr7 in pi-class glutathione transferases. Eur J Biochem. 1993 Aug 1;215(3):663–670. doi: 10.1111/j.1432-1033.1993.tb18077.x. [DOI] [PubMed] [Google Scholar]
- Kocharova N. A., Vinogradov E. V., Borisova S. A., Shashkov A. S., Knirel Y. A. Identification of N epsilon-[(R)-1-carboxyethyl]-L-lysine in, and the complete structure of, the repeating unit of the O-specific polysaccharide of Providencia alcalifaciens O23. Carbohydr Res. 1998 Jun;309(1):131–133. doi: 10.1016/s0008-6215(98)00083-4. [DOI] [PubMed] [Google Scholar]
- Krook M., Ghosh D., Strömberg R., Carlquist M., Jörnvall H. Carboxyethyllysine in a protein: native carbonyl reductase/NADP(+)-dependent prostaglandin dehydrogenase. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):502–506. doi: 10.1073/pnas.90.2.502. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Li Y. K., Kuliopulos A., Mildvan A. S., Talalay P. Environments and mechanistic roles of the tyrosine residues of delta 5-3-ketosteroid isomerase. Biochemistry. 1993 Feb 23;32(7):1816–1824. doi: 10.1021/bi00058a016. [DOI] [PubMed] [Google Scholar]
- Meyer D. J., Xia C., Coles B., Chen H., Reinemer P., Huber R., Ketterer B. Unusual reactivity of Tyr-7 of GSH transferase P1-1. Biochem J. 1993 Jul 15;293(Pt 2):351–356. doi: 10.1042/bj2930351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller S. P., Thompson J. Biosynthesis and stereochemical configuration of N5-(1-carboxyethyl)ornithine. An unusual amino acid produced by Streptococcus lactis. J Biol Chem. 1987 Nov 25;262(33):16109–16115. [PubMed] [Google Scholar]
- Orozco M., Vega C., Parraga A., García-Sáez I., Coll M., Walsh S., Mantle T. J., Javier Luque F. On the reaction mechanism of class Pi glutathione S-transferase. Proteins. 1997 Aug;28(4):530–542. [PubMed] [Google Scholar]
- Patchett A. A., Cordes E. H. The design and properties of N-carboxyalkyldipeptide inhibitors of angiotensin-converting enzyme. Adv Enzymol Relat Areas Mol Biol. 1985;57:1–84. doi: 10.1002/9780470123034.ch1. [DOI] [PubMed] [Google Scholar]
- Provencher S. W., Glöckner J. Estimation of globular protein secondary structure from circular dichroism. Biochemistry. 1981 Jan 6;20(1):33–37. doi: 10.1021/bi00504a006. [DOI] [PubMed] [Google Scholar]
- Sackett D. L., Bhattacharyya B., Wolff J. Local unfolding and the stepwise loss of the functional properties of tubulin. Biochemistry. 1994 Nov 1;33(43):12868–12878. doi: 10.1021/bi00209a019. [DOI] [PubMed] [Google Scholar]
- Sackett D. L. Structure and function in the tubulin dimer and the role of the acidic carboxyl terminus. Subcell Biochem. 1995;24:255–302. doi: 10.1007/978-1-4899-1727-0_9. [DOI] [PubMed] [Google Scholar]
- Shashkov A. S., Toukach F. V., Senchenkova S. N., Ziolkowski A., Paramonov N. A., Kaca W., Knirel YuA, Kochetkov N. K. Structure of the O-specific polysaccharide of the bacterium Proteus mirabilis O13 containing a novel component: an amide of D-galacturonic acid with N(epsilon)-(1-carboxyethyl)lysine. Biochemistry (Mosc) 1997 May;62(5):509–513. [PubMed] [Google Scholar]
- Thompson J., Donkersloot J. A. N-(carboxyalkyl)amino acids: occurrence, synthesis, and functions. Annu Rev Biochem. 1992;61:517–557. doi: 10.1146/annurev.bi.61.070192.002505. [DOI] [PubMed] [Google Scholar]
- Thompson J., Miller S. P. N5-(1-carboxyethyl)ornithine and related [N-carboxyalkyl]-amino acids: structure, biosynthesis, and function. Adv Enzymol Relat Areas Mol Biol. 1991;64:317–399. doi: 10.1002/9780470123102.ch7. [DOI] [PubMed] [Google Scholar]
- Thompson J., Miller S. P. N6-(1-carboxyethyl)lysine formation by Streptococcus lactis. Purification, synthesis, and stereochemical structure. J Biol Chem. 1988 Feb 5;263(4):2064–2069. [PubMed] [Google Scholar]
- Thompson J. N5-(L-1-carboxyethyl)-L-ornithine:NADP+ oxidoreductase from Streptococcus lactis. Purification and partial characterization. J Biol Chem. 1989 Jun 5;264(16):9592–9601. [PubMed] [Google Scholar]
- Thompson J., Nguyen N. Y., Sackett D. L., Donkersloot J. A. Transposon-encoded sucrose metabolism in Lactococcus lactis. Purification of sucrose-6-phosphate hydrolase and genetic linkage to N5-(L-1-carboxyethyl)-L-ornithine synthase in strain K1. J Biol Chem. 1991 Aug 5;266(22):14573–14579. [PubMed] [Google Scholar]
- Thompson J., Sackett D. L., Donkersloot J. A. Purification and properties of fructokinase I from Lactococcus lactis. Localization of scrK on the sucrose-nisin transposon Tn5306. J Biol Chem. 1991 Nov 25;266(33):22626–22633. [PubMed] [Google Scholar]
- Xiao G., Liu S., Ji X., Johnson W. W., Chen J., Parsons J. F., Stevens W. J., Gilliland G. L., Armstrong R. N. First-sphere and second-sphere electrostatic effects in the active site of a class mu gluthathione transferase. Biochemistry. 1996 Apr 16;35(15):4753–4765. doi: 10.1021/bi960189k. [DOI] [PubMed] [Google Scholar]