Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Sep;7(9):1976–1982. doi: 10.1002/pro.5560070913

The structure of serine hydroxymethyltransferase as modeled by homology and validated by site-directed mutagenesis.

S Pascarella 1, S Angelaccio 1, R Contestabile 1, S Delle Fratte 1, M Di Salvo 1, F Bossa 1
PMCID: PMC2144154  PMID: 9761478

Abstract

We describe a model for the three-dimensional structure of E. coli serine hydroxymethyltransferase based on its sequence homology with other PLP enzymes of the alpha-family and whose tertiary structures are known. The model suggests that certain amino acid residues at the putative active site of the enzyme can adopt specific roles in the catalytic mechanism. These proposals were supported by analysis of the properties of a number of site-directed mutants. New active site features are also proposed for further experimental testing.

Full Text

The Full Text of this article is available as a PDF (752.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander F. W., Sandmeier E., Mehta P. K., Christen P. Evolutionary relationships among pyridoxal-5'-phosphate-dependent enzymes. Regio-specific alpha, beta and gamma families. Eur J Biochem. 1994 Feb 1;219(3):953–960. doi: 10.1111/j.1432-1033.1994.tb18577.x. [DOI] [PubMed] [Google Scholar]
  2. Angelaccio S., Pascarella S., Fattori E., Bossa F., Strong W., Schirch V. Serine hydroxymethyltransferase: origin of substrate specificity. Biochemistry. 1992 Jan 14;31(1):155–162. doi: 10.1021/bi00116a023. [DOI] [PubMed] [Google Scholar]
  3. Antson A. A., Demidkina T. V., Gollnick P., Dauter Z., von Tersch R. L., Long J., Berezhnoy S. N., Phillips R. S., Harutyunyan E. H., Wilson K. S. Three-dimensional structure of tyrosine phenol-lyase. Biochemistry. 1993 Apr 27;32(16):4195–4206. doi: 10.1021/bi00067a006. [DOI] [PubMed] [Google Scholar]
  4. Bairoch A., Boeckmann B. The SWISS-PROT protein sequence data bank. Nucleic Acids Res. 1991 Apr 25;19 (Suppl):2247–2249. doi: 10.1093/nar/19.suppl.2247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  6. Bossa F., Barra D., Martini F., Schirch L. V., Fasella P. Serine transhydroxymethylase from rabbit liver. Sequence of anonapeptide at the pyridoxal-5'-phosphate-binding site. Eur J Biochem. 1976 Nov 15;70(2):397–401. doi: 10.1111/j.1432-1033.1976.tb11029.x. [DOI] [PubMed] [Google Scholar]
  7. Delle Fratte S., Iurescia S., Angelaccio S., Bossa F., Schirch V. The function of arginine 363 as the substrate carboxyl-binding site in Escherichia coli serine hydroxymethyltransferase. Eur J Biochem. 1994 Oct 1;225(1):395–401. doi: 10.1111/j.1432-1033.1994.00395.x. [DOI] [PubMed] [Google Scholar]
  8. Dunathan H. C. Conformation and reaction specificity in pyridoxal phosphate enzymes. Proc Natl Acad Sci U S A. 1966 Apr;55(4):712–716. doi: 10.1073/pnas.55.4.712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goldberg J. M., Swanson R. V., Goodman H. S., Kirsch J. F. The tyrosine-225 to phenylalanine mutation of Escherichia coli aspartate aminotransferase results in an alkaline transition in the spectrophotometric and kinetic pKa values and reduced values of both kcat and Km. Biochemistry. 1991 Jan 8;30(1):305–312. doi: 10.1021/bi00215a041. [DOI] [PubMed] [Google Scholar]
  10. Greer J. Comparative model-building of the mammalian serine proteases. J Mol Biol. 1981 Dec 25;153(4):1027–1042. doi: 10.1016/0022-2836(81)90465-4. [DOI] [PubMed] [Google Scholar]
  11. Gribskov M., McLachlan A. D., Eisenberg D. Profile analysis: detection of distantly related proteins. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4355–4358. doi: 10.1073/pnas.84.13.4355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hayashi H., Kagamiyama H. Reaction of aspartate aminotransferase with L-erythro-3-hydroxyaspartate: involvement of Tyr70 in stabilization of the catalytic intermediates. Biochemistry. 1995 Jul 25;34(29):9413–9423. doi: 10.1021/bi00029a017. [DOI] [PubMed] [Google Scholar]
  13. Hennig M., Grimm B., Contestabile R., John R. A., Jansonius J. N. Crystal structure of glutamate-1-semialdehyde aminomutase: an alpha2-dimeric vitamin B6-dependent enzyme with asymmetry in structure and active site reactivity. Proc Natl Acad Sci U S A. 1997 May 13;94(10):4866–4871. doi: 10.1073/pnas.94.10.4866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hopkins S., Schirch V. Properties of a serine hydroxymethyltransferase in which an active site histidine has been changed to an asparagine by site-directed mutagenesis. J Biol Chem. 1986 Mar 5;261(7):3363–3369. [PubMed] [Google Scholar]
  15. Iurescia S., Condò I., Angelaccio S., Delle Fratte S., Bossa F. Site-directed mutagenesis techniques in the study of Escherichia coli serine hydroxymethyltransferase. Protein Expr Purif. 1996 May;7(3):323–328. doi: 10.1006/prep.1996.0046. [DOI] [PubMed] [Google Scholar]
  16. Jagath J. R., Sharma B., Rao N. A., Savithri H. S. The role of His-134, -147, and -150 residues in subunit assembly, cofactor binding, and catalysis of sheep liver cytosolic serine hydroxymethyltransferase. J Biol Chem. 1997 Sep 26;272(39):24355–24362. doi: 10.1074/jbc.272.39.24355. [DOI] [PubMed] [Google Scholar]
  17. Joshi-Tope G., Schirch V. The role of a critical sulfhydryl group in the mechanism of serine hydroxymethyltransferase. Ann N Y Acad Sci. 1990;585:339–345. doi: 10.1111/j.1749-6632.1990.tb28066.x. [DOI] [PubMed] [Google Scholar]
  18. Kirsch J. F., Eichele G., Ford G. C., Vincent M. G., Jansonius J. N., Gehring H., Christen P. Mechanism of action of aspartate aminotransferase proposed on the basis of its spatial structure. J Mol Biol. 1984 Apr 15;174(3):497–525. doi: 10.1016/0022-2836(84)90333-4. [DOI] [PubMed] [Google Scholar]
  19. Knäblein J., Neuefeind T., Schneider F., Bergner A., Messerschmidt A., Löwe J., Steipe B., Huber R. Ta6Br(2+)12, a tool for phase determination of large biological assemblies by X-ray crystallography. J Mol Biol. 1997 Jul 4;270(1):1–7. doi: 10.1006/jmbi.1997.1074. [DOI] [PubMed] [Google Scholar]
  20. Lüthy R., Bowie J. U., Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature. 1992 Mar 5;356(6364):83–85. doi: 10.1038/356083a0. [DOI] [PubMed] [Google Scholar]
  21. Malthouse J. P., Milne J. J., Gariani L. S. A comparative study of the kinetics and stereochemistry of the serine hydroxymethyltransferase- and tryptophan synthase-catalysed exchange of the pro-2R and pro-2S protons of glycine. Biochem J. 1991 Mar 15;274(Pt 3):807–812. doi: 10.1042/bj2740807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McDonald I. K., Thornton J. M. Satisfying hydrogen bonding potential in proteins. J Mol Biol. 1994 May 20;238(5):777–793. doi: 10.1006/jmbi.1994.1334. [DOI] [PubMed] [Google Scholar]
  23. McPhalen C. A., Vincent M. G., Jansonius J. N. X-ray structure refinement and comparison of three forms of mitochondrial aspartate aminotransferase. J Mol Biol. 1992 May 20;225(2):495–517. doi: 10.1016/0022-2836(92)90935-d. [DOI] [PubMed] [Google Scholar]
  24. Mehta P. K., Hale T. I., Christen P. Aminotransferases: demonstration of homology and division into evolutionary subgroups. Eur J Biochem. 1993 Jun 1;214(2):549–561. doi: 10.1111/j.1432-1033.1993.tb17953.x. [DOI] [PubMed] [Google Scholar]
  25. Momany C., Ernst S., Ghosh R., Chang N. L., Hackert M. L. Crystallographic structure of a PLP-dependent ornithine decarboxylase from Lactobacillus 30a to 3.0 A resolution. J Mol Biol. 1995 Oct 6;252(5):643–655. doi: 10.1006/jmbi.1995.0526. [DOI] [PubMed] [Google Scholar]
  26. Okamoto A., Higuchi T., Hirotsu K., Kuramitsu S., Kagamiyama H. X-ray crystallographic study of pyridoxal 5'-phosphate-type aspartate aminotransferases from Escherichia coli in open and closed form. J Biochem. 1994 Jul;116(1):95–107. doi: 10.1093/oxfordjournals.jbchem.a124509. [DOI] [PubMed] [Google Scholar]
  27. Pascarella S., Schirch V., Bossa F. Similarity between serine hydroxymethyltransferase and other pyridoxal phosphate-dependent enzymes. FEBS Lett. 1993 Sep 27;331(1-2):145–149. doi: 10.1016/0014-5793(93)80314-k. [DOI] [PubMed] [Google Scholar]
  28. Pattabiraman N., Namboodiri K., Lowrey A., Gaber B. P. NRL-3D: a sequence-structure database derived from the protein data bank (PDB) and searchable within the PIR environment. Protein Seq Data Anal. 1990 Oct;3(5):387–405. [PubMed] [Google Scholar]
  29. Rossmann M. G., Argos P. A comparison of the heme binding pocket in globins and cytochrome b5. J Biol Chem. 1975 Sep 25;250(18):7525–7532. [PubMed] [Google Scholar]
  30. Sali A., Blundell T. L. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993 Dec 5;234(3):779–815. doi: 10.1006/jmbi.1993.1626. [DOI] [PubMed] [Google Scholar]
  31. Shen B. W., Ramesh V., Mueller R., Hohenester E., Hennig M., Jansonius J. N. Crystallization and preliminary X-ray diffraction studies of recombinant human ornithine aminotransferase. J Mol Biol. 1994 Oct 14;243(1):128–130. doi: 10.1006/jmbi.1994.1637. [DOI] [PubMed] [Google Scholar]
  32. Shostak K., Schirch V. Serine hydroxymethyltransferase: mechanism of the racemization and transamination of D- and L-alanine. Biochemistry. 1988 Oct 18;27(21):8007–8014. doi: 10.1021/bi00421a006. [DOI] [PubMed] [Google Scholar]
  33. Stover P., Zamora M., Shostak K., Gautam-Basak M., Schirch V. Escherichia coli serine hydroxymethyltransferase. The role of histidine 228 in determining reaction specificity. J Biol Chem. 1992 Sep 5;267(25):17679–17687. [PubMed] [Google Scholar]
  34. Toney M. D., Hohenester E., Keller J. W., Jansonius J. N. Structural and mechanistic analysis of two refined crystal structures of the pyridoxal phosphate-dependent enzyme dialkylglycine decarboxylase. J Mol Biol. 1995 Jan 13;245(2):151–179. doi: 10.1006/jmbi.1994.0014. [DOI] [PubMed] [Google Scholar]
  35. Vogt G., Etzold T., Argos P. An assessment of amino acid exchange matrices in aligning protein sequences: the twilight zone revisited. J Mol Biol. 1995 Jun 16;249(4):816–831. doi: 10.1006/jmbi.1995.0340. [DOI] [PubMed] [Google Scholar]
  36. Yano T., Kuramitsu S., Tanase S., Morino Y., Hiromi K., Kagamiyama H. The role of His143 in the catalytic mechanism of Escherichia coli aspartate aminotransferase. J Biol Chem. 1991 Apr 5;266(10):6079–6085. [PubMed] [Google Scholar]
  37. Yano T., Kuramitsu S., Tanase S., Morino Y., Kagamiyama H. Role of Asp222 in the catalytic mechanism of Escherichia coli aspartate aminotransferase: the amino acid residue which enhances the function of the enzyme-bound coenzyme pyridoxal 5'-phosphate. Biochemistry. 1992 Jun 30;31(25):5878–5887. doi: 10.1021/bi00140a025. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES