Abstract
The conversion from an alpha-helix to a beta-strand has received extensive attention since this structural change may induce many amyloidogenic proteins to self-assemble into fibrils and cause fatal diseases. Here we report the conversion of a peptide segment from a beta-strand to an alpha-helix by a single-site mutation as observed in the crystal structure of Fis mutant Pro26Ala determined at 2.0 A resolution. Pro26 in Fis occurs at the point where a flexible extended beta-hairpin arm leaves the core structure. Thus it can be classified as a "hinge proline" located at the C-terminal end of the beta2-strand and the N-terminal cap of the A alpha-helix. The replacement of Pro26 to alanine extends the A alpha-helix for two additional turns in one of the dimeric subunits; therefore, the structure of the peptide from residues 22 to 26 is converted from a beta-strand to an alpha-helix. This result confirms the structural importance of the proline residue located at the hinge region and may explain the mutant's reduced ability to activate Hin-catalyzed DNA inversion. The peptide (residues 20 to 26) in the second monomer subunit presumably retains its beta-strand conformation in the crystal; therefore, this peptide shows a "chameleon-like" character since it can adopt either an alpha-helix or a beta-strand structure in different environments. The structure of Pro26Ala provides an additional example where not only the protein sequence, but also non-local interactions determine the secondary structure of proteins.
Full Text
The Full Text of this article is available as a PDF (3.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abel K., Yoder M. D., Hilgenfeld R., Jurnak F. An alpha to beta conformational switch in EF-Tu. Structure. 1996 Oct 15;4(10):1153–1159. doi: 10.1016/s0969-2126(96)00123-2. [DOI] [PubMed] [Google Scholar]
- Bergdoll M., Remy M. H., Cagnon C., Masson J. M., Dumas P. Proline-dependent oligomerization with arm exchange. Structure. 1997 Mar 15;5(3):391–401. doi: 10.1016/s0969-2126(97)00196-2. [DOI] [PubMed] [Google Scholar]
- Blaber M., Zhang X. J., Matthews B. W. Structural basis of amino acid alpha helix propensity. Science. 1993 Jun 11;260(5114):1637–1640. doi: 10.1126/science.8503008. [DOI] [PubMed] [Google Scholar]
- Doig A. J., Baldwin R. L. N- and C-capping preferences for all 20 amino acids in alpha-helical peptides. Protein Sci. 1995 Jul;4(7):1325–1336. doi: 10.1002/pro.5560040708. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doig A. J., MacArthur M. W., Stapley B. J., Thornton J. M. Structures of N-termini of helices in proteins. Protein Sci. 1997 Jan;6(1):147–155. doi: 10.1002/pro.5560060117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Finkel S. E., Johnson R. C. The Fis protein: it's not just for DNA inversion anymore. Mol Microbiol. 1992 Nov;6(22):3257–3265. doi: 10.1111/j.1365-2958.1992.tb02193.x. [DOI] [PubMed] [Google Scholar]
- Harrison P. M., Bamborough P., Daggett V., Prusiner S. B., Cohen F. E. The prion folding problem. Curr Opin Struct Biol. 1997 Feb;7(1):53–59. doi: 10.1016/s0959-440x(97)80007-3. [DOI] [PubMed] [Google Scholar]
- Heichman K. A., Johnson R. C. The Hin invertasome: protein-mediated joining of distant recombination sites at the enhancer. Science. 1990 Aug 3;249(4968):511–517. doi: 10.1126/science.2166334. [DOI] [PubMed] [Google Scholar]
- Jasanoff A., Fersht A. R. Quantitative determination of helical propensities from trifluoroethanol titration curves. Biochemistry. 1994 Mar 1;33(8):2129–2135. doi: 10.1021/bi00174a020. [DOI] [PubMed] [Google Scholar]
- Johnson R. C., Bruist M. F., Simon M. I. Host protein requirements for in vitro site-specific DNA inversion. Cell. 1986 Aug 15;46(4):531–539. doi: 10.1016/0092-8674(86)90878-0. [DOI] [PubMed] [Google Scholar]
- Johnson R. C. Mechanism of site-specific DNA inversion in bacteria. Curr Opin Genet Dev. 1991 Oct;1(3):404–411. doi: 10.1016/s0959-437x(05)80307-7. [DOI] [PubMed] [Google Scholar]
- Kelly J. W. Alternative conformations of amyloidogenic proteins govern their behavior. Curr Opin Struct Biol. 1996 Feb;6(1):11–17. doi: 10.1016/s0959-440x(96)80089-3. [DOI] [PubMed] [Google Scholar]
- Koch C., Kahmann R. Purification and properties of the Escherichia coli host factor required for inversion of the G segment in bacteriophage Mu. J Biol Chem. 1986 Nov 25;261(33):15673–15678. [PubMed] [Google Scholar]
- Koch C., Ninnemann O., Fuss H., Kahmann R. The N-terminal part of the E.coli DNA binding protein FIS is essential for stimulating site-specific DNA inversion but is not required for specific DNA binding. Nucleic Acids Res. 1991 Nov 11;19(21):5915–5922. doi: 10.1093/nar/19.21.5915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kostrewa D., Granzin J., Koch C., Choe H. W., Raghunathan S., Wolf W., Labahn J., Kahmann R., Saenger W. Three-dimensional structure of the E. coli DNA-binding protein FIS. Nature. 1991 Jan 10;349(6305):178–180. doi: 10.1038/349178a0. [DOI] [PubMed] [Google Scholar]
- Kostrewa D., Granzin J., Stock D., Choe H. W., Labahn J., Saenger W. Crystal structure of the factor for inversion stimulation FIS at 2.0 A resolution. J Mol Biol. 1992 Jul 5;226(1):209–226. doi: 10.1016/0022-2836(92)90134-6. [DOI] [PubMed] [Google Scholar]
- Luo P., Baldwin R. L. Mechanism of helix induction by trifluoroethanol: a framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water. Biochemistry. 1997 Jul 8;36(27):8413–8421. doi: 10.1021/bi9707133. [DOI] [PubMed] [Google Scholar]
- Minor D. L., Jr, Kim P. S. Context is a major determinant of beta-sheet propensity. Nature. 1994 Sep 15;371(6494):264–267. doi: 10.1038/371264a0. [DOI] [PubMed] [Google Scholar]
- Minor D. L., Jr, Kim P. S. Context-dependent secondary structure formation of a designed protein sequence. Nature. 1996 Apr 25;380(6576):730–734. doi: 10.1038/380730a0. [DOI] [PubMed] [Google Scholar]
- O'Neil K. T., DeGrado W. F. A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science. 1990 Nov 2;250(4981):646–651. doi: 10.1126/science.2237415. [DOI] [PubMed] [Google Scholar]
- Osuna R., Finkel S. E., Johnson R. C. Identification of two functional regions in Fis: the N-terminus is required to promote Hin-mediated DNA inversion but not lambda excision. EMBO J. 1991 Jun;10(6):1593–1603. doi: 10.1002/j.1460-2075.1991.tb07680.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pan C. Q., Finkel S. E., Cramton S. E., Feng J. A., Sigman D. S., Johnson R. C. Variable structures of Fis-DNA complexes determined by flanking DNA-protein contacts. J Mol Biol. 1996 Dec 13;264(4):675–695. doi: 10.1006/jmbi.1996.0669. [DOI] [PubMed] [Google Scholar]
- Prusiner S. B. Molecular biology and genetics of prion diseases. Philos Trans R Soc Lond B Biol Sci. 1994 Mar 29;343(1306):447–463. doi: 10.1098/rstb.1994.0043. [DOI] [PubMed] [Google Scholar]
- Richardson J. S., Richardson D. C. Amino acid preferences for specific locations at the ends of alpha helices. Science. 1988 Jun 17;240(4859):1648–1652. doi: 10.1126/science.3381086. [DOI] [PubMed] [Google Scholar]
- Riek R., Hornemann S., Wider G., Billeter M., Glockshuber R., Wüthrich K. NMR structure of the mouse prion protein domain PrP(121-231). Nature. 1996 Jul 11;382(6587):180–182. doi: 10.1038/382180a0. [DOI] [PubMed] [Google Scholar]
- Safo M. K., Yang W. Z., Corselli L., Cramton S. E., Yuan H. S., Johnson R. C. The transactivation region of the fis protein that controls site-specific DNA inversion contains extended mobile beta-hairpin arms. EMBO J. 1997 Nov 17;16(22):6860–6873. doi: 10.1093/emboj/16.22.6860. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xiong H., Buckwalter B. L., Shieh H. M., Hecht M. H. Periodicity of polar and nonpolar amino acids is the major determinant of secondary structure in self-assembling oligomeric peptides. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6349–6353. doi: 10.1073/pnas.92.14.6349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu J., Johnson R. C. aldB, an RpoS-dependent gene in Escherichia coli encoding an aldehyde dehydrogenase that is repressed by Fis and activated by Crp. J Bacteriol. 1995 Jun;177(11):3166–3175. doi: 10.1128/jb.177.11.3166-3175.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yuan H. S., Finkel S. E., Feng J. A., Kaczor-Grzeskowiak M., Johnson R. C., Dickerson R. E. The molecular structure of wild-type and a mutant Fis protein: relationship between mutational changes and recombinational enhancer function or DNA binding. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9558–9562. doi: 10.1073/pnas.88.21.9558. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yuan H. S., Wang S. S., Yang W. Z., Finkel S. E., Johnson R. C. The structure of Fis mutant Pro61Ala illustrates that the kink within the long alpha-helix is not due to the presence of the proline residue. J Biol Chem. 1994 Nov 18;269(46):28947–28954. doi: 10.2210/pdb1fip/pdb. [DOI] [PubMed] [Google Scholar]