Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Sep;7(9):1998–2003. doi: 10.1002/pro.5560070916

Distance geometry generates native-like folds for small helical proteins using the consensus distances of predicted protein structures.

E S Huang 1, R Samudrala 1, J W Ponder 1
PMCID: PMC2144160  PMID: 9761481

Abstract

For successful ab initio protein structure prediction, a method is needed to identify native-like structures from a set containing both native and non-native protein-like conformations. In this regard, the use of distance geometry has shown promise when accurate inter-residue distances are available. We describe a method by which distance geometry restraints are culled from sets of 500 protein-like conformations for four small helical proteins generated by the method of Simons et al. (1997). A consensus-based approach was applied in which every inter-Calpha distance was measured, and the most frequently occurring distances were used as input restraints for distance geometry. For each protein, a structure with lower coordinate root-mean-square (RMS) error than the mean of the original set was constructed; in three cases the topology of the fold resembled that of the native protein. When the fold sets were filtered for the best scoring conformations with respect to an all-atom knowledge-based scoring function, the remaining subset of 50 structures yielded restraints of higher accuracy. A second round of distance geometry using these restraints resulted in an average coordinate RMS error of 4.38 A.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aszódi A., Gradwell M. J., Taylor W. R. Global fold determination from a small number of distance restraints. J Mol Biol. 1995 Aug 11;251(2):308–326. doi: 10.1006/jmbi.1995.0436. [DOI] [PubMed] [Google Scholar]
  2. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  3. Bower M. J., Cohen F. E., Dunbrack R. L., Jr Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: a new homology modeling tool. J Mol Biol. 1997 Apr 18;267(5):1268–1282. doi: 10.1006/jmbi.1997.0926. [DOI] [PubMed] [Google Scholar]
  4. Bowie J. U., Eisenberg D. An evolutionary approach to folding small alpha-helical proteins that uses sequence information and an empirical guiding fitness function. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4436–4440. doi: 10.1073/pnas.91.10.4436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Covell D. G. Folding protein alpha-carbon chains into compact forms by Monte Carlo methods. Proteins. 1992 Nov;14(3):409–420. doi: 10.1002/prot.340140310. [DOI] [PubMed] [Google Scholar]
  6. Covell D. G. Lattice model simulations of polypeptide chain folding. J Mol Biol. 1994 Jan 21;235(3):1032–1043. doi: 10.1006/jmbi.1994.1055. [DOI] [PubMed] [Google Scholar]
  7. Dandekar T., Argos P. Folding the main chain of small proteins with the genetic algorithm. J Mol Biol. 1994 Feb 25;236(3):844–861. doi: 10.1006/jmbi.1994.1193. [DOI] [PubMed] [Google Scholar]
  8. Dandekar T., Argos P. Identifying the tertiary fold of small proteins with different topologies from sequence and secondary structure using the genetic algorithm and extended criteria specific for strand regions. J Mol Biol. 1996 Mar 1;256(3):645–660. doi: 10.1006/jmbi.1996.0115. [DOI] [PubMed] [Google Scholar]
  9. Dunbrack R. L., Jr, Karplus M. Backbone-dependent rotamer library for proteins. Application to side-chain prediction. J Mol Biol. 1993 Mar 20;230(2):543–574. doi: 10.1006/jmbi.1993.1170. [DOI] [PubMed] [Google Scholar]
  10. Havel T. F. The sampling properties of some distance geometry algorithms applied to unconstrained polypeptide chains: a study of 1830 independently computed conformations. Biopolymers. 1990 Oct-Nov;29(12-13):1565–1585. doi: 10.1002/bip.360291207. [DOI] [PubMed] [Google Scholar]
  11. Hinds D. A., Levitt M. A lattice model for protein structure prediction at low resolution. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2536–2540. doi: 10.1073/pnas.89.7.2536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hinds D. A., Levitt M. Exploring conformational space with a simple lattice model for protein structure. J Mol Biol. 1994 Nov 4;243(4):668–682. doi: 10.1016/0022-2836(94)90040-x. [DOI] [PubMed] [Google Scholar]
  13. Hodsdon M. E., Ponder J. W., Cistola D. P. The NMR solution structure of intestinal fatty acid-binding protein complexed with palmitate: application of a novel distance geometry algorithm. J Mol Biol. 1996 Dec 6;264(3):585–602. doi: 10.1006/jmbi.1996.0663. [DOI] [PubMed] [Google Scholar]
  14. Hänggi G., Braun W. Pattern recognition and self-correcting distance geometry calculations applied to myohemerythrin. FEBS Lett. 1994 May 16;344(2-3):147–153. doi: 10.1016/0014-5793(94)00366-1. [DOI] [PubMed] [Google Scholar]
  15. Kolinski A., Skolnick J. Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme. Proteins. 1994 Apr;18(4):338–352. doi: 10.1002/prot.340180405. [DOI] [PubMed] [Google Scholar]
  16. Monge A., Lathrop E. J., Gunn J. R., Shenkin P. S., Friesner R. A. Computer modeling of protein folding: conformational and energetic analysis of reduced and detailed protein models. J Mol Biol. 1995 Apr 14;247(5):995–1012. doi: 10.1006/jmbi.1995.0195. [DOI] [PubMed] [Google Scholar]
  17. Mumenthaler C., Braun W. Predicting the helix packing of globular proteins by self-correcting distance geometry. Protein Sci. 1995 May;4(5):863–871. doi: 10.1002/pro.5560040506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Oshiro C. M., Thomason J., Kuntz I. D. Effects of limited input distance constraints upon the distance geometry algorithm. Biopolymers. 1991 Aug;31(9):1049–1064. doi: 10.1002/bip.360310905. [DOI] [PubMed] [Google Scholar]
  19. Park B. H., Huang E. S., Levitt M. Factors affecting the ability of energy functions to discriminate correct from incorrect folds. J Mol Biol. 1997 Mar 7;266(4):831–846. doi: 10.1006/jmbi.1996.0809. [DOI] [PubMed] [Google Scholar]
  20. Simons K. T., Kooperberg C., Huang E., Baker D. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol. 1997 Apr 25;268(1):209–225. doi: 10.1006/jmbi.1997.0959. [DOI] [PubMed] [Google Scholar]
  21. Skolnick J., Kolinski A., Ortiz A. R. MONSSTER: a method for folding globular proteins with a small number of distance restraints. J Mol Biol. 1997 Jan 17;265(2):217–241. doi: 10.1006/jmbi.1996.0720. [DOI] [PubMed] [Google Scholar]
  22. Sun S., Thomas P. D., Dill K. A. A simple protein folding algorithm using a binary code and secondary structure constraints. Protein Eng. 1995 Aug;8(8):769–778. doi: 10.1093/protein/8.8.769. [DOI] [PubMed] [Google Scholar]
  23. Tufféry P., Etchebest C., Hazout S. Prediction of protein side chain conformations: a study on the influence of backbone accuracy on conformation stability in the rotamer space. Protein Eng. 1997 Apr;10(4):361–372. doi: 10.1093/protein/10.4.361. [DOI] [PubMed] [Google Scholar]
  24. Vieth M., Kolinski A., Brooks C. L., 3rd, Skolnick J. Prediction of the folding pathways and structure of the GCN4 leucine zipper. J Mol Biol. 1994 Apr 8;237(4):361–367. doi: 10.1006/jmbi.1994.1239. [DOI] [PubMed] [Google Scholar]
  25. Wilson C., Doniach S. A computer model to dynamically simulate protein folding: studies with crambin. Proteins. 1989;6(2):193–209. doi: 10.1002/prot.340060208. [DOI] [PubMed] [Google Scholar]
  26. Yue K., Dill K. A. Folding proteins with a simple energy function and extensive conformational searching. Protein Sci. 1996 Feb;5(2):254–261. doi: 10.1002/pro.5560050209. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES