Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Sep;7(9):1939–1946. doi: 10.1002/pro.5560070909

The de novo design of a rubredoxin-like Fe site.

E Farinas 1, L Regan 1
PMCID: PMC2144162  PMID: 9761474

Abstract

A redox center similar to that of rubredoxin was designed into the 56 amino acid immunoglobulin binding B1 domain of Streptococcals protein G. The redox center in rubredoxin contains an iron ion tetrahedrally coordinated by four cysteine residues, [Fe(S-Cys)4](-1),(-2). The design criteria for the target site included taking backbone movements into account, tetrahedral metal-binding, and maintaining the structure and stability of the wild-type protein. The optical absorption spectrum of the Co(II) complex of the metal-binding variant is characteristic of tetrahedral chelation by four cysteine residues. Circular dichroism and nuclear magnetic resonance measurements reveal that the metal-free and Cd(II)-bound forms of the variant are folded correctly and are stable. The Fe(III) complex of the metal-binding mutant reproduces the optical and the electron paramagnetic resonance spectra of oxidized rubredoxin. This demonstrates that the engineered protein chelates Fe(III) in a tetrahedral array, and the resulting center is similar to that of oxidized rubredoxin.

Full Text

The Full Text of this article is available as a PDF (5.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barchi J. J., Jr, Grasberger B., Gronenborn A. M., Clore G. M. Investigation of the backbone dynamics of the IgG-binding domain of streptococcal protein G by heteronuclear two-dimensional 1H-15N nuclear magnetic resonance spectroscopy. Protein Sci. 1994 Jan;3(1):15–21. doi: 10.1002/pro.5560030103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bennett D. E., Johnson M. K. The electronic and magnetic properties of rubredoxin: a low-temperature magnetic circular dichroism study. Biochim Biophys Acta. 1987 Jan 5;911(1):71–80. doi: 10.1016/0167-4838(87)90272-x. [DOI] [PubMed] [Google Scholar]
  3. Benson D. E., Wisz M. S., Liu W., Hellinga H. W. Construction of a novel redox protein by rational design: conversion of a disulfide bridge into a mononuclear iron-sulfur center. Biochemistry. 1998 May 19;37(20):7070–7076. doi: 10.1021/bi980583d. [DOI] [PubMed] [Google Scholar]
  4. Blake P. R., Park J. B., Bryant F. O., Aono S., Magnuson J. K., Eccleston E., Howard J. B., Summers M. F., Adams M. W. Determinants of protein hyperthermostability: purification and amino acid sequence of rubredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus and secondary structure of the zinc adduct by NMR. Biochemistry. 1991 Nov 12;30(45):10885–10895. doi: 10.1021/bi00109a012. [DOI] [PubMed] [Google Scholar]
  5. Bryson J. W., Betz S. F., Lu H. S., Suich D. J., Zhou H. X., O'Neil K. T., DeGrado W. F. Protein design: a hierarchic approach. Science. 1995 Nov 10;270(5238):935–941. doi: 10.1126/science.270.5238.935. [DOI] [PubMed] [Google Scholar]
  6. Clarke N. D., Yuan S. M. Metal search: a computer program that helps design tetrahedral metal-binding sites. Proteins. 1995 Oct;23(2):256–263. doi: 10.1002/prot.340230214. [DOI] [PubMed] [Google Scholar]
  7. Coldren C. D., Hellinga H. W., Caradonna J. P. The rational design and construction of a cuboidal iron-sulfur protein. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6635–6640. doi: 10.1073/pnas.94.13.6635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dahiyat B. I., Mayo S. L. De novo protein design: fully automated sequence selection. Science. 1997 Oct 3;278(5335):82–87. doi: 10.1126/science.278.5335.82. [DOI] [PubMed] [Google Scholar]
  9. Day M. W., Hsu B. T., Joshua-Tor L., Park J. B., Zhou Z. H., Adams M. W., Rees D. C. X-ray crystal structures of the oxidized and reduced forms of the rubredoxin from the marine hyperthermophilic archaebacterium Pyrococcus furiosus. Protein Sci. 1992 Nov;1(11):1494–1507. doi: 10.1002/pro.5560011111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Desjarlais J. R., Handel T. M. New strategies in protein design. Curr Opin Biotechnol. 1995 Aug;6(4):460–466. doi: 10.1016/0958-1669(95)80076-x. [DOI] [PubMed] [Google Scholar]
  11. Dill K. A. Dominant forces in protein folding. Biochemistry. 1990 Aug 7;29(31):7133–7155. doi: 10.1021/bi00483a001. [DOI] [PubMed] [Google Scholar]
  12. Gallagher T., Alexander P., Bryan P., Gilliland G. L. Two crystal structures of the B1 immunoglobulin-binding domain of streptococcal protein G and comparison with NMR. Biochemistry. 1994 Apr 19;33(15):4721–4729. [PubMed] [Google Scholar]
  13. Gibney B. R., Mulholland S. E., Rabanal F., Dutton P. L. Ferredoxin and ferredoxin-heme maquettes. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15041–15046. doi: 10.1073/pnas.93.26.15041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gronenborn A. M., Filpula D. R., Essig N. Z., Achari A., Whitlow M., Wingfield P. T., Clore G. M. A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. Science. 1991 Aug 9;253(5020):657–661. doi: 10.1126/science.1871600. [DOI] [PubMed] [Google Scholar]
  15. Hellinga H. W., Richards F. M. Construction of new ligand binding sites in proteins of known structure. I. Computer-aided modeling of sites with pre-defined geometry. J Mol Biol. 1991 Dec 5;222(3):763–785. doi: 10.1016/0022-2836(91)90510-d. [DOI] [PubMed] [Google Scholar]
  16. Henehan C. J., Pountney D. L., Zerbe O., Vasák M. Identification of cysteine ligands in metalloproteins using optical and NMR spectroscopy: cadmium-substituted rubredoxin as a model [Cd(CysS)4]2- center. Protein Sci. 1993 Oct;2(10):1756–1764. doi: 10.1002/pro.5560021019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jackson D. Y., Burnier J., Quan C., Stanley M., Tom J., Wells J. A. A designed peptide ligase for total synthesis of ribonuclease A with unnatural catalytic residues. Science. 1994 Oct 14;266(5183):243–247. doi: 10.1126/science.7939659. [DOI] [PubMed] [Google Scholar]
  18. Klemba M., Gardner K. H., Marino S., Clarke N. D., Regan L. Novel metal-binding proteins by design. Nat Struct Biol. 1995 May;2(5):368–373. doi: 10.1038/nsb0595-368. [DOI] [PubMed] [Google Scholar]
  19. Klemba M., Regan L. Characterization of metal binding by a designed protein: single ligand substitutions at a tetrahedral Cys2His2 site. Biochemistry. 1995 Aug 8;34(31):10094–10100. doi: 10.1021/bi00031a034. [DOI] [PubMed] [Google Scholar]
  20. LeGall J., Prickril B. C., Moura I., Xavier A. V., Moura J. J., Huynh B. H. Isolation and characterization of rubrerythrin, a non-heme iron protein from Desulfovibrio vulgaris that contains rubredoxin centers and a hemerythrin-like binuclear iron cluster. Biochemistry. 1988 Mar 8;27(5):1636–1642. doi: 10.1021/bi00405a037. [DOI] [PubMed] [Google Scholar]
  21. Lim W. A., Hodel A., Sauer R. T., Richards F. M. The crystal structure of a mutant protein with altered but improved hydrophobic core packing. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):423–427. doi: 10.1073/pnas.91.1.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lovenberg W., Sobel B. E. Rubredoxin: a new electron transfer protein from Clostridium pasteurianum. Proc Natl Acad Sci U S A. 1965 Jul;54(1):193–199. doi: 10.1073/pnas.54.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moura I., Moura J. J., Santos M. H., Xavier A. V., Le Gall J. Redox studies on rubredoxins from sulphate and sulphur reducing bacteria. FEBS Lett. 1979 Nov 15;107(2):419–421. doi: 10.1016/0014-5793(79)80421-4. [DOI] [PubMed] [Google Scholar]
  24. Moura I., Teixeira M., LeGall J., Moura J. J. Spectroscopic studies of cobalt and nickel substituted rubredoxin and desulforedoxin. J Inorg Biochem. 1991 Nov;44(2):127–139. doi: 10.1016/0162-0134(91)84025-5. [DOI] [PubMed] [Google Scholar]
  25. Moura I., Xavier A. V., Cammack R., Bruschi M., Le Gall J. A comparative spectroscopic study of two non-haem iron proteins lacking labile sulphide from Desulphovibrio gigas. Biochim Biophys Acta. 1978 Mar 28;533(1):156–162. doi: 10.1016/0005-2795(78)90559-7. [DOI] [PubMed] [Google Scholar]
  26. Pinto A. L., Hellinga H. W., Caradonna J. P. Construction of a catalytically active iron superoxide dismutase by rational protein design. Proc Natl Acad Sci U S A. 1997 May 27;94(11):5562–5567. doi: 10.1073/pnas.94.11.5562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Quéméneur E., Moutiez M., Charbonnier J. B., Ménez A. Engineering cyclophilin into a proline-specific endopeptidase. Nature. 1998 Jan 15;391(6664):301–304. doi: 10.1038/34687. [DOI] [PubMed] [Google Scholar]
  28. Regan L., Clarke N. D. A tetrahedral zinc(II)-binding site introduced into a designed protein. Biochemistry. 1990 Dec 11;29(49):10878–10883. doi: 10.1021/bi00501a003. [DOI] [PubMed] [Google Scholar]
  29. Regan L., DeGrado W. F. Characterization of a helical protein designed from first principles. Science. 1988 Aug 19;241(4868):976–978. doi: 10.1126/science.3043666. [DOI] [PubMed] [Google Scholar]
  30. Regan L. Protein design: novel metal-binding sites. Trends Biochem Sci. 1995 Jul;20(7):280–285. doi: 10.1016/s0968-0004(00)89044-1. [DOI] [PubMed] [Google Scholar]
  31. Regan L. The design of metal-binding sites in proteins. Annu Rev Biophys Biomol Struct. 1993;22:257–287. doi: 10.1146/annurev.bb.22.060193.001353. [DOI] [PubMed] [Google Scholar]
  32. Riddles P. W., Blakeley R. L., Zerner B. Reassessment of Ellman's reagent. Methods Enzymol. 1983;91:49–60. doi: 10.1016/s0076-6879(83)91010-8. [DOI] [PubMed] [Google Scholar]
  33. Schafmeister C. E., Miercke L. J., Stroud R. M. Structure at 2.5 A of a designed peptide that maintains solubility of membrane proteins. Science. 1993 Oct 29;262(5134):734–738. doi: 10.1126/science.8235592. [DOI] [PubMed] [Google Scholar]
  34. Scott M. P., Biggins J. Introduction of a [4Fe-4S (S-cys)4]+1,+2 iron-sulfur center into a four-alpha helix protein using design parameters from the domain of the Fx cluster in the Photosystem I reaction center. Protein Sci. 1997 Feb;6(2):340–346. doi: 10.1002/pro.5560060209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Watenpaugh K. D., Sieker L. C., Jensen L. H. Crystallographic refinement of rubredoxin at 1 x 2 A degrees resolution. J Mol Biol. 1980 Apr 15;138(3):615–633. doi: 10.1016/s0022-2836(80)80020-9. [DOI] [PubMed] [Google Scholar]
  36. Yan Y., Erickson B. W. Engineering of betabellin 14D: disulfide-induced folding of a beta-sheet protein. Protein Sci. 1994 Jul;3(7):1069–1073. doi: 10.1002/pro.5560030709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yelle R. B., Park N. S., Ichiye T. Molecular dynamics simulations of rubredoxin from Clostridium pasteurianum: changes in structure and electrostatic potential during redox reactions. Proteins. 1995 Jun;22(2):154–167. doi: 10.1002/prot.340220208. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES