Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Sep;7(9):2004–2011. doi: 10.1002/pro.5560070917

Compactness of the kinetic molten globule of bovine alpha-lactalbumin: a dynamic light scattering study.

K Gast 1, D Zirwer 1, M Müller-Frohne 1, G Damaschun 1
PMCID: PMC2144166  PMID: 9761482

Abstract

During folding of globular proteins, the molten globule state was observed as an equilibrium intermediate under mildly denaturing conditions as well as a transient intermediate in kinetic refolding experiments. While the high compactness of the equilibrium intermediate of alpha-lactalbumin has been verified, direct measurements of the compactness of the kinetic intermediate have not been reported until now. Our dynamic light scattering measurements provide a complete set of the hydrodynamic dimensions of bovine alpha-lactalbumin in different conformational states, particularly in the kinetic molten globule state. The Stokes radii for the native, kinetic molten globule, equilibrium molten globule, and unfolded states are 1.91, 1.99, 2.08, and 2.46 nm, respectively. Therefore, the kinetic intermediate appears to be even more compact than its equilibrium counterpart. Remarkable differences in the concentration dependence of the Stokes radius exist revealing strong attractive but repulsive intermolecular interactions in the kinetic and equilibrium molten globule states, respectively. This underlines the importance of extrapolation to zero protein concentration in measurements of the molecular compactness.

Full Text

The Full Text of this article is available as a PDF (844.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexandrescu A. T., Evans P. A., Pitkeathly M., Baum J., Dobson C. M. Structure and dynamics of the acid-denatured molten globule state of alpha-lactalbumin: a two-dimensional NMR study. Biochemistry. 1993 Feb 23;32(7):1707–1718. doi: 10.1021/bi00058a003. [DOI] [PubMed] [Google Scholar]
  2. Arai M., Kuwajima K. Rapid formation of a molten globule intermediate in refolding of alpha-lactalbumin. Fold Des. 1996;1(4):275–287. doi: 10.1016/s1359-0278(96)00041-7. [DOI] [PubMed] [Google Scholar]
  3. Balbach J., Forge V., Lau W. S., van Nuland N. A., Brew K., Dobson C. M. Protein folding monitored at individual residues during a two-dimensional NMR experiment. Science. 1996 Nov 15;274(5290):1161–1163. doi: 10.1126/science.274.5290.1161. [DOI] [PubMed] [Google Scholar]
  4. Balbach J., Forge V., van Nuland N. A., Winder S. L., Hore P. J., Dobson C. M. Following protein folding in real time using NMR spectroscopy. Nat Struct Biol. 1995 Oct;2(10):865–870. doi: 10.1038/nsb1095-865. [DOI] [PubMed] [Google Scholar]
  5. Damaschun G., Damaschun H., Gast K., Misselwitz R., Zirwer D., Gührs K. H., Hartmann M., Schlott B., Triebel H., Behnke D. Physical and conformational properties of staphylokinase in solution. Biochim Biophys Acta. 1993 Feb 13;1161(2-3):244–248. doi: 10.1016/0167-4838(93)90220-l. [DOI] [PubMed] [Google Scholar]
  6. Damaschun G., Damaschun H., Gast K., Zirwer D. Denatured states of yeast phosphoglycerate kinase. Biochemistry (Mosc) 1998 Mar;63(3):259–275. [PubMed] [Google Scholar]
  7. Damaschun H., Gast K., Hahn U., Kröber R., Müller-Frohne M., Zirwer D., Damaschun G. Conformation of thermally denatured RNase T1 with intact disulfide bonds: a study by small-angle X-ray scattering. Biochim Biophys Acta. 1997 Jul 18;1340(2):235–244. doi: 10.1016/s0167-4838(97)00047-2. [DOI] [PubMed] [Google Scholar]
  8. Dolgikh D. A., Abaturov L. V., Bolotina I. A., Brazhnikov E. V., Bychkova V. E., Gilmanshin R. I., Lebedev YuO, Semisotnov G. V., Tiktopulo E. I., Ptitsyn O. B. Compact state of a protein molecule with pronounced small-scale mobility: bovine alpha-lactalbumin. Eur Biophys J. 1985;13(2):109–121. doi: 10.1007/BF00256531. [DOI] [PubMed] [Google Scholar]
  9. Engelhard M., Evans P. A. Kinetics of interaction of partially folded proteins with a hydrophobic dye: evidence that molten globule character is maximal in early folding intermediates. Protein Sci. 1995 Aug;4(8):1553–1562. doi: 10.1002/pro.5560040813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gast K., Damaschun H., Misselwitz R., Müller-Frohne M., Zirwer D., Damaschun G. Compactness of protein molten globules: temperature-induced structural changes of the apomyoglobin folding intermediate. Eur Biophys J. 1994;23(4):297–305. doi: 10.1007/BF00213579. [DOI] [PubMed] [Google Scholar]
  11. Ikeguchi M., Kuwajima K., Mitani M., Sugai S. Evidence for identity between the equilibrium unfolding intermediate and a transient folding intermediate: a comparative study of the folding reactions of alpha-lactalbumin and lysozyme. Biochemistry. 1986 Nov 4;25(22):6965–6972. doi: 10.1021/bi00370a034. [DOI] [PubMed] [Google Scholar]
  12. KRONMAN M. J., ANDREOTTI R. E. INTER- AND INTRAMOLECULAR INTERACTIONS OF ALPHA-LACTALBUMIN. I. THE APPARENT HETEROGENEITY AT ACID PH. Biochemistry. 1964 Aug;3:1145–1151. doi: 10.1021/bi00896a024. [DOI] [PubMed] [Google Scholar]
  13. Kuwajima K., Hiraoka Y., Ikeguchi M., Sugai S. Comparison of the transient folding intermediates in lysozyme and alpha-lactalbumin. Biochemistry. 1985 Feb 12;24(4):874–881. doi: 10.1021/bi00325a010. [DOI] [PubMed] [Google Scholar]
  14. Kuwajima K., Mitani M., Sugai S. Characterization of the critical state in protein folding. Effects of guanidine hydrochloride and specific Ca2+ binding on the folding kinetics of alpha-lactalbumin. J Mol Biol. 1989 Apr 5;206(3):547–561. doi: 10.1016/0022-2836(89)90500-7. [DOI] [PubMed] [Google Scholar]
  15. Kuwajima K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins. 1989;6(2):87–103. doi: 10.1002/prot.340060202. [DOI] [PubMed] [Google Scholar]
  16. Kuwajima K. The molten globule state of alpha-lactalbumin. FASEB J. 1996 Jan;10(1):102–109. doi: 10.1096/fasebj.10.1.8566530. [DOI] [PubMed] [Google Scholar]
  17. Lala A. K., Kaul P. Increased exposure of hydrophobic surface in molten globule state of alpha-lactalbumin. Fluorescence and hydrophobic photolabeling studies. J Biol Chem. 1992 Oct 5;267(28):19914–19918. [PubMed] [Google Scholar]
  18. Nozaki Y. The preparation of guanidine hydrochloride. Methods Enzymol. 1972;26:43–50. doi: 10.1016/s0076-6879(72)26005-0. [DOI] [PubMed] [Google Scholar]
  19. Nöppert A., Gast K., Zirwer D., Damaschun G. Initial hydrophobic collapse is not necessary for folding RNase A. Fold Des. 1998;3(3):213–221. doi: 10.1016/S1359-0278(98)00029-7. [DOI] [PubMed] [Google Scholar]
  20. Peng Z. Y., Kim P. S. A protein dissection study of a molten globule. Biochemistry. 1994 Mar 1;33(8):2136–2141. doi: 10.1021/bi00174a021. [DOI] [PubMed] [Google Scholar]
  21. Pfeil W. Is the molten globule a third thermodynamic state of protein? The example of alpha-lactalbumin. Proteins. 1998 Jan;30(1):43–48. doi: 10.1002/(sici)1097-0134(19980101)30:1<43::aid-prot4>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
  22. Pike A. C., Brew K., Acharya K. R. Crystal structures of guinea-pig, goat and bovine alpha-lactalbumin highlight the enhanced conformational flexibility of regions that are significant for its action in lactose synthase. Structure. 1996 Jun 15;4(6):691–703. doi: 10.1016/s0969-2126(96)00075-5. [DOI] [PubMed] [Google Scholar]
  23. Ptitsyn O. B. Molten globule and protein folding. Adv Protein Chem. 1995;47:83–229. doi: 10.1016/s0065-3233(08)60546-x. [DOI] [PubMed] [Google Scholar]
  24. Schindler T., Herrler M., Marahiel M. A., Schmid F. X. Extremely rapid protein folding in the absence of intermediates. Nat Struct Biol. 1995 Aug;2(8):663–673. doi: 10.1038/nsb0895-663. [DOI] [PubMed] [Google Scholar]
  25. Schulman B. A., Kim P. S., Dobson C. M., Redfield C. A residue-specific NMR view of the non-cooperative unfolding of a molten globule. Nat Struct Biol. 1997 Aug;4(8):630–634. doi: 10.1038/nsb0897-630. [DOI] [PubMed] [Google Scholar]
  26. Shimizu A., Ikeguchi M., Sugai S. Unfolding of the molten globule state of alpha-lactalbumin studied by 1H NMR. Biochemistry. 1993 Dec 7;32(48):13198–13203. doi: 10.1021/bi00211a031. [DOI] [PubMed] [Google Scholar]
  27. Uchiyama H., Perez-Prat E. M., Watanabe K., Kumagai I., Kuwajima K. Effects of amino acid substitutions in the hydrophobic core of alpha-lactalbumin on the stability of the molten globule state. Protein Eng. 1995 Nov;8(11):1153–1161. doi: 10.1093/protein/8.11.1153. [DOI] [PubMed] [Google Scholar]
  28. Wu L. C., Kim P. S. Hydrophobic sequence minimization of the alpha-lactalbumin molten globule. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14314–14319. doi: 10.1073/pnas.94.26.14314. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES