Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Sep;7(9):1868–1874. doi: 10.1002/pro.5560070903

Quantitative evaluation of the chicken lysozyme epitope in the HyHEL-10 Fab complex: free energies and kinetics.

A Rajpal 1, M G Taylor 1, J F Kirsch 1
PMCID: PMC2144172  PMID: 9761468

Abstract

The hen (chicken) egg-white lysozyme (HEWL) epitope for the monoclonal antibody HyHEL-10 Fab (Fab-10) was investigated by alanine scan mutagenesis. The association rate constants (k(on)) for the HEWL Fab-10 complexes were obtained from the homogenous solution method described in the preceding paper (Taylor et al., 1998). A new method for determining the dissociation rate constant (k(off)) for the complex, by trapping nascent free antibody with an inactive HEWL mutant is described. The values of k(on) fall within a factor of 2 of the wild-type (WT) HEWL value (1.43+/-0.13 X 10(6)M(-1)s(-1)), while the increases in k(off)more nearly reflect the total change in free energies of the complex (deltadeltaG(D)). The dissociation constants (K(D)) were measured directly in those cases where satisfactory kinetic data could not be obtained. The Y20A, K96A, and K97A HEWL.Fab-10 complexes are destabilized by more than 4 kcal/mol compared to the WT complex. The R21A, L75A, and D101A antibody complexes are moderately destabilized (0.7 < deltadeltaG(D)< or = 1.0 kcal/mol). Additional mutations of the "hotspot" residues (Tyr20, Lys96, Lys97) were constructed to probe, more precisely, the nature of their contributions to complex formation. The results show that the entire hydrocarbon side chains of Tyr20 and Lys97, and only the epsilon-amino group of Lys96, contribute to the stability of the complex. The value of deltadeltaG(D) for the R21A mutant complex is a distinct outlier in the Arg21 replacement series demonstrating the importance of supplementing alanine scan mutagenesis with additional mutations.

Full Text

The Full Text of this article is available as a PDF (3.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barr P. J., Gibson H. L., Enea V., Arnot D. E., Hollingdale M. R., Nussenzweig V. Expression in yeast of a Plasmodium vivax antigen of potential use in a human malaria vaccine. J Exp Med. 1987 Apr 1;165(4):1160–1171. doi: 10.1084/jem.165.4.1160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Clackson T., Wells J. A. A hot spot of binding energy in a hormone-receptor interface. Science. 1995 Jan 20;267(5196):383–386. doi: 10.1126/science.7529940. [DOI] [PubMed] [Google Scholar]
  3. Climie S., Ruiz-Perez L., Gonzalez-Pacanowska D., Prapunwattana P., Cho S. W., Stroud R., Santi D. V. Saturation site-directed mutagenesis of thymidylate synthase. J Biol Chem. 1990 Nov 5;265(31):18776–18779. [PubMed] [Google Scholar]
  4. Cunningham B. C., Wells J. A. Comparison of a structural and a functional epitope. J Mol Biol. 1993 Dec 5;234(3):554–563. doi: 10.1006/jmbi.1993.1611. [DOI] [PubMed] [Google Scholar]
  5. Dall'Acqua W., Goldman E. R., Eisenstein E., Mariuzza R. A. A mutational analysis of the binding of two different proteins to the same antibody. Biochemistry. 1996 Jul 30;35(30):9667–9676. doi: 10.1021/bi960819i. [DOI] [PubMed] [Google Scholar]
  6. Estell D. A. Artifacts in the application of linear free energy analysis. Protein Eng. 1987 Dec;1(6):441–442. doi: 10.1093/protein/1.6.441. [DOI] [PubMed] [Google Scholar]
  7. Goldman E. R., Dall'Acqua W., Braden B. C., Mariuzza R. A. Analysis of binding interactions in an idiotope-antiidiotope protein-protein complex by double mutant cycles. Biochemistry. 1997 Jan 7;36(1):49–56. doi: 10.1021/bi961769k. [DOI] [PubMed] [Google Scholar]
  8. Hendsch Z. S., Tidor B. Do salt bridges stabilize proteins? A continuum electrostatic analysis. Protein Sci. 1994 Feb;3(2):211–226. doi: 10.1002/pro.5560030206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Janin J., Chothia C. The structure of protein-protein recognition sites. J Biol Chem. 1990 Sep 25;265(27):16027–16030. [PubMed] [Google Scholar]
  10. Jin L., Fendly B. M., Wells J. A. High resolution functional analysis of antibody-antigen interactions. J Mol Biol. 1992 Aug 5;226(3):851–865. doi: 10.1016/0022-2836(92)90636-x. [DOI] [PubMed] [Google Scholar]
  11. Kelley R. F., O'Connell M. P. Thermodynamic analysis of an antibody functional epitope. Biochemistry. 1993 Jul 13;32(27):6828–6835. doi: 10.1021/bi00078a005. [DOI] [PubMed] [Google Scholar]
  12. Kelly J. A., Sielecki A. R., Sykes B. D., James M. N., Phillips D. C. X-ray crystallography of the binding of the bacterial cell wall trisaccharide NAM-NAG-NAM to lysozyme. Nature. 1979 Dec 20;282(5741):875–878. doi: 10.1038/282875a0. [DOI] [PubMed] [Google Scholar]
  13. Malcolm B. A., Rosenberg S., Corey M. J., Allen J. S., de Baetselier A., Kirsch J. F. Site-directed mutagenesis of the catalytic residues Asp-52 and Glu-35 of chicken egg white lysozyme. Proc Natl Acad Sci U S A. 1989 Jan;86(1):133–137. doi: 10.1073/pnas.86.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Matsumura I., Kirsch J. F. Is aspartate 52 essential for catalysis by chicken egg white lysozyme? The role of natural substrate-assisted hydrolysis. Biochemistry. 1996 Feb 13;35(6):1881–1889. doi: 10.1021/bi951671q. [DOI] [PubMed] [Google Scholar]
  15. Novotny J., Bruccoleri R. E., Davis M., Sharp K. A. Empirical free energy calculations: a blind test and further improvements to the method. J Mol Biol. 1997 May 2;268(2):401–411. doi: 10.1006/jmbi.1997.0961. [DOI] [PubMed] [Google Scholar]
  16. Novotny J. Protein antigenicity: a thermodynamic approach. Mol Immunol. 1991 Mar;28(3):201–207. doi: 10.1016/0161-5890(91)90062-o. [DOI] [PubMed] [Google Scholar]
  17. Padlan E. A., Silverton E. W., Sheriff S., Cohen G. H., Smith-Gill S. J., Davies D. R. Structure of an antibody-antigen complex: crystal structure of the HyHEL-10 Fab-lysozyme complex. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5938–5942. doi: 10.1073/pnas.86.15.5938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pearce K. H., Jr, Potts B. J., Presta L. G., Bald L. N., Fendly B. M., Wells J. A. Mutational analysis of thrombopoietin for identification of receptor and neutralizing antibody sites. J Biol Chem. 1997 Aug 15;272(33):20595–20602. doi: 10.1074/jbc.272.33.20595. [DOI] [PubMed] [Google Scholar]
  19. SOPHIANOPOULOS A. J., RHODES C. K., HOLCOMB D. N., VAN HOLDE K. E. Physical studies of lysozyme. I. Characterization. J Biol Chem. 1962 Apr;237:1107–1112. [PubMed] [Google Scholar]
  20. Sandberg W. S., Schlunk P. M., Zabin H. B., Terwilliger T. C. Relationship between in vivo activity and in vitro measures of function and stability of a protein. Biochemistry. 1995 Sep 19;34(37):11970–11978. doi: 10.1021/bi00037a039. [DOI] [PubMed] [Google Scholar]
  21. Shih P., Malcolm B. A., Rosenberg S., Kirsch J. F., Wilson A. C. Reconstruction and testing of ancestral proteins. Methods Enzymol. 1993;224:576–590. doi: 10.1016/0076-6879(93)24043-t. [DOI] [PubMed] [Google Scholar]
  22. Smith-Gill S. J., Lavoie T. B., Mainhart C. R. Antigenic regions defined by monoclonal antibodies correspond to structural domains of avian lysozyme. J Immunol. 1984 Jul;133(1):384–393. [PubMed] [Google Scholar]
  23. Smith-Gill S. J., Mainhart C. R., Lavoie T. B., Rudikoff S., Potter M. VL-VH expression by monoclonal antibodies recognizing avian lysozyme. J Immunol. 1984 Feb;132(2):963–967. [PubMed] [Google Scholar]
  24. Smith-Gill S. J. Molecular recognition of lysozyme by monoclonal antibodies. EXS. 1996;75:277–300. doi: 10.1007/978-3-0348-9225-4_15. [DOI] [PubMed] [Google Scholar]
  25. Taylor M. G., Rajpal A., Kirsch J. F. Kinetic epitope mapping of the chicken lysozyme.HyHEL-10 Fab complex: delineation of docking trajectories. Protein Sci. 1998 Sep;7(9):1857–1867. doi: 10.1002/pro.5560070902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tsiang M., Paborsky L. R., Li W. X., Jain A. K., Mao C. T., Dunn K. E., Lee D. W., Matsumura S. Y., Matteucci M. D., Coutré S. E. Protein engineering thrombin for optimal specificity and potency of anticoagulant activity in vivo. Biochemistry. 1996 Dec 24;35(51):16449–16457. doi: 10.1021/bi9616108. [DOI] [PubMed] [Google Scholar]
  27. Tsumoto K., Ogasahara K., Ueda Y., Watanabe K., Yutani K., Kumagai I. Role of Tyr residues in the contact region of anti-lysozyme monoclonal antibody HyHEL10 for antigen binding. J Biol Chem. 1995 Aug 4;270(31):18551–18557. doi: 10.1074/jbc.270.31.18551. [DOI] [PubMed] [Google Scholar]
  28. Tsumoto K., Ogasahara K., Ueda Y., Watanabe K., Yutani K., Kumagai I. Role of salt bridge formation in antigen-antibody interaction. Entropic contribution to the complex between hen egg white lysozyme and its monoclonal antibody HyHEL10. J Biol Chem. 1996 Dec 20;271(51):32612–32616. doi: 10.1074/jbc.271.51.32612. [DOI] [PubMed] [Google Scholar]
  29. Wells J. A. Systematic mutational analyses of protein-protein interfaces. Methods Enzymol. 1991;202:390–411. doi: 10.1016/0076-6879(91)02020-a. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES