Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Sep;7(9):1857–1867. doi: 10.1002/pro.5560070902

Kinetic epitope mapping of the chicken lysozyme.HyHEL-10 Fab complex: delineation of docking trajectories.

M G Taylor 1, A Rajpal 1, J F Kirsch 1
PMCID: PMC2144174  PMID: 9761467

Abstract

The rate constants, k(on), for the formation of hen (chicken) lysozyme (HEWL). Fab-10 complexes have been determined for wild-type (WT) and epitope-mutated lysozymes by a homogeneous solution method based on the 95% reduced enzymatic activity of the complex. The values fall within a narrow 10-fold range [(0.18 to 1.92) x 10(6) M(-1)s(-l)]. The affinity constants, K(D), cover a broader, 440-fold, range from 0.075 to 33 nM. Values of K(D) as high as 7 microM were obtained for the complexes prepared from some mutations at HEWL positions 96 and 97, but the associated kinetic constants could not be determined. The values of k(on) are negatively correlated with side-chain volume at position 101HEWL, but are essentially independent of this parameter for position 21HEWL substitutions. The multiple mutations made at positions 21HEWL and 101HEWL provide sufficient experimental data on complex formation to evaluate phi values [phi = (deltadeltaGon)/(deltadeltaG(D))] at these two positions to begin to define trajectories for protein-protein association. The data, when interpreted within the concept of a two-step association sequence embracing a metastable encounter complex intermediate, argue that the rate determining step at position 21HEWL (phiavg = 0.2) is encounter complex formation, but the larger phi(avg) value of 0.36 experienced for most position 101HEWL mutations indicates a larger contribution from the post-encounter annealing process at this site for these replacements.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschuh D., Dubs M. C., Weiss E., Zeder-Lutz G., Van Regenmortel M. H. Determination of kinetic constants for the interaction between a monoclonal antibody and peptides using surface plasmon resonance. Biochemistry. 1992 Jul 14;31(27):6298–6304. doi: 10.1021/bi00142a019. [DOI] [PubMed] [Google Scholar]
  2. Bhat T. N., Bentley G. A., Boulot G., Greene M. I., Tello D., Dall'Acqua W., Souchon H., Schwarz F. P., Mariuzza R. A., Poljak R. J. Bound water molecules and conformational stabilization help mediate an antigen-antibody association. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1089–1093. doi: 10.1073/pnas.91.3.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Braun P. J., Dennis S., Hofsteenge J., Stone S. R. Use of site-directed mutagenesis to investigate the basis for the specificity of hirudin. Biochemistry. 1988 Aug 23;27(17):6517–6522. doi: 10.1021/bi00417a048. [DOI] [PubMed] [Google Scholar]
  4. Brouwer A. C., Kirsch J. F. Investigation of diffusion-limited rates of chymotrypsin reactions by viscosity variation. Biochemistry. 1982 Mar 16;21(6):1302–1307. doi: 10.1021/bi00535a030. [DOI] [PubMed] [Google Scholar]
  5. Cannon W. R., Singleton S. F., Benkovic S. J. A perspective on biological catalysis. Nat Struct Biol. 1996 Oct;3(10):821–833. doi: 10.1038/nsb1096-821. [DOI] [PubMed] [Google Scholar]
  6. Carter P. J., Winter G., Wilkinson A. J., Fersht A. R. The use of double mutants to detect structural changes in the active site of the tyrosyl-tRNA synthetase (Bacillus stearothermophilus). Cell. 1984 Oct;38(3):835–840. doi: 10.1016/0092-8674(84)90278-2. [DOI] [PubMed] [Google Scholar]
  7. Clackson T., Wells J. A. A hot spot of binding energy in a hormone-receptor interface. Science. 1995 Jan 20;267(5196):383–386. doi: 10.1126/science.7529940. [DOI] [PubMed] [Google Scholar]
  8. Dall'Acqua W., Goldman E. R., Eisenstein E., Mariuzza R. A. A mutational analysis of the binding of two different proteins to the same antibody. Biochemistry. 1996 Jul 30;35(30):9667–9676. doi: 10.1021/bi960819i. [DOI] [PubMed] [Google Scholar]
  9. England P., Brégégère F., Bedouelle H. Energetic and kinetic contributions of contact residues of antibody D1.3 in the interaction with lysozyme. Biochemistry. 1997 Jan 7;36(1):164–172. doi: 10.1021/bi961419y. [DOI] [PubMed] [Google Scholar]
  10. Fersht A. R., Matouschek A., Serrano L. The folding of an enzyme. I. Theory of protein engineering analysis of stability and pathway of protein folding. J Mol Biol. 1992 Apr 5;224(3):771–782. doi: 10.1016/0022-2836(92)90561-w. [DOI] [PubMed] [Google Scholar]
  11. Foote J., Winter G. Antibody framework residues affecting the conformation of the hypervariable loops. J Mol Biol. 1992 Mar 20;224(2):487–499. doi: 10.1016/0022-2836(92)91010-m. [DOI] [PubMed] [Google Scholar]
  12. Goldman E. R., Dall'Acqua W., Braden B. C., Mariuzza R. A. Analysis of binding interactions in an idiotope-antiidiotope protein-protein complex by double mutant cycles. Biochemistry. 1997 Jan 7;36(1):49–56. doi: 10.1021/bi961769k. [DOI] [PubMed] [Google Scholar]
  13. Hendsch Z. S., Tidor B. Do salt bridges stabilize proteins? A continuum electrostatic analysis. Protein Sci. 1994 Feb;3(2):211–226. doi: 10.1002/pro.5560030206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Horovitz A., Fersht A. R. Co-operative interactions during protein folding. J Mol Biol. 1992 Apr 5;224(3):733–740. doi: 10.1016/0022-2836(92)90557-z. [DOI] [PubMed] [Google Scholar]
  15. Horton N., Lewis M. Calculation of the free energy of association for protein complexes. Protein Sci. 1992 Jan;1(1):169–181. doi: 10.1002/pro.5560010117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ito W., Yasui H., Kurosawa Y. Mutations in the complementarity-determining regions do not cause differences in free energy during the process of formation of the activated complex between an antibody and the corresponding protein antigen. J Mol Biol. 1995 May 12;248(4):729–732. doi: 10.1006/jmbi.1995.0255. [DOI] [PubMed] [Google Scholar]
  17. Janin J., Chothia C. The structure of protein-protein recognition sites. J Biol Chem. 1990 Sep 25;265(27):16027–16030. [PubMed] [Google Scholar]
  18. Janin J. Elusive affinities. Proteins. 1995 Jan;21(1):30–39. doi: 10.1002/prot.340210105. [DOI] [PubMed] [Google Scholar]
  19. Janin J. The kinetics of protein-protein recognition. Proteins. 1997 Jun;28(2):153–161. doi: 10.1002/(sici)1097-0134(199706)28:2<153::aid-prot4>3.0.co;2-g. [DOI] [PubMed] [Google Scholar]
  20. Jencks W. P. On the attribution and additivity of binding energies. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4046–4050. doi: 10.1073/pnas.78.7.4046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jin L., Wells J. A. Dissecting the energetics of an antibody-antigen interface by alanine shaving and molecular grafting. Protein Sci. 1994 Dec;3(12):2351–2357. doi: 10.1002/pro.5560031219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Julin D. A., Kirsch J. F. Kinetic isotope effect studies on aspartate aminotransferase: evidence for a concerted 1,3 prototropic shift mechanism for the cytoplasmic isozyme and L-aspartate and dichotomy in mechanism. Biochemistry. 1989 May 2;28(9):3825–3833. doi: 10.1021/bi00435a031. [DOI] [PubMed] [Google Scholar]
  23. Kam-Morgan L. N., Smith-Gill S. J., Taylor M. G., Zhang L., Wilson A. C., Kirsch J. F. High-resolution mapping of the HyHEL-10 epitope of chicken lysozyme by site-directed mutagenesis. Proc Natl Acad Sci U S A. 1993 May 1;90(9):3958–3962. doi: 10.1073/pnas.90.9.3958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kozack R. E., Subramaniam S. Brownian dynamics simulations of molecular recognition in an antibody-antigen system. Protein Sci. 1993 Jun;2(6):915–926. doi: 10.1002/pro.5560020605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Malcolm B. A., Rosenberg S., Corey M. J., Allen J. S., de Baetselier A., Kirsch J. F. Site-directed mutagenesis of the catalytic residues Asp-52 and Glu-35 of chicken egg white lysozyme. Proc Natl Acad Sci U S A. 1989 Jan;86(1):133–137. doi: 10.1073/pnas.86.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Matouschek A., Serrano L., Fersht A. R. The folding of an enzyme. IV. Structure of an intermediate in the refolding of barnase analysed by a protein engineering procedure. J Mol Biol. 1992 Apr 5;224(3):819–835. doi: 10.1016/0022-2836(92)90564-z. [DOI] [PubMed] [Google Scholar]
  27. Matsumura I., Kirsch J. F. Is aspartate 52 essential for catalysis by chicken egg white lysozyme? The role of natural substrate-assisted hydrolysis. Biochemistry. 1996 Feb 13;35(6):1881–1889. doi: 10.1021/bi951671q. [DOI] [PubMed] [Google Scholar]
  28. Nieba L., Krebber A., Plückthun A. Competition BIAcore for measuring true affinities: large differences from values determined from binding kinetics. Anal Biochem. 1996 Feb 15;234(2):155–165. doi: 10.1006/abio.1996.0067. [DOI] [PubMed] [Google Scholar]
  29. Padlan E. A., Silverton E. W., Sheriff S., Cohen G. H., Smith-Gill S. J., Davies D. R. Structure of an antibody-antigen complex: crystal structure of the HyHEL-10 Fab-lysozyme complex. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5938–5942. doi: 10.1073/pnas.86.15.5938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rajpal A., Taylor M. G., Kirsch J. F. Quantitative evaluation of the chicken lysozyme epitope in the HyHEL-10 Fab complex: free energies and kinetics. Protein Sci. 1998 Sep;7(9):1868–1874. doi: 10.1002/pro.5560070903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Raman C. S., Jemmerson R., Nall B. T., Allen M. J. Diffusion-limited rates for monoclonal antibody binding to cytochrome c. Biochemistry. 1992 Oct 27;31(42):10370–10379. doi: 10.1021/bi00157a027. [DOI] [PubMed] [Google Scholar]
  32. SHUGAR D. The measurement of lysozyme activity and the ultra-violet inactivation of lysozyme. Biochim Biophys Acta. 1952 Mar;8(3):302–309. doi: 10.1016/0006-3002(52)90045-0. [DOI] [PubMed] [Google Scholar]
  33. SOPHIANOPOULOS A. J., RHODES C. K., HOLCOMB D. N., VAN HOLDE K. E. Physical studies of lysozyme. I. Characterization. J Biol Chem. 1962 Apr;237:1107–1112. [PubMed] [Google Scholar]
  34. Sancho J., Fersht A. R. Dissection of an enzyme by protein engineering. The N and C-terminal fragments of barnase form a native-like complex with restored enzymic activity. J Mol Biol. 1992 Apr 5;224(3):741–747. doi: 10.1016/0022-2836(92)90558-2. [DOI] [PubMed] [Google Scholar]
  35. Sancho J., Meiering E. M., Fersht A. R. Mapping transition states of protein unfolding by protein engineering of ligand-binding sites. J Mol Biol. 1991 Oct 5;221(3):1007–1014. doi: 10.1016/0022-2836(91)80188-z. [DOI] [PubMed] [Google Scholar]
  36. Schreiber G., Fersht A. R. Energetics of protein-protein interactions: analysis of the barnase-barstar interface by single mutations and double mutant cycles. J Mol Biol. 1995 Apr 28;248(2):478–486. doi: 10.1016/s0022-2836(95)80064-6. [DOI] [PubMed] [Google Scholar]
  37. Serrano L., Matouschek A., Fersht A. R. The folding of an enzyme. III. Structure of the transition state for unfolding of barnase analysed by a protein engineering procedure. J Mol Biol. 1992 Apr 5;224(3):805–818. doi: 10.1016/0022-2836(92)90563-y. [DOI] [PubMed] [Google Scholar]
  38. Serrano L., Matouschek A., Fersht A. R. The folding of an enzyme. VI. The folding pathway of barnase: comparison with theoretical models. J Mol Biol. 1992 Apr 5;224(3):847–859. doi: 10.1016/0022-2836(92)90566-3. [DOI] [PubMed] [Google Scholar]
  39. Shih P., Malcolm B. A., Rosenberg S., Kirsch J. F., Wilson A. C. Reconstruction and testing of ancestral proteins. Methods Enzymol. 1993;224:576–590. doi: 10.1016/0076-6879(93)24043-t. [DOI] [PubMed] [Google Scholar]
  40. Tsai C. J., Xu D., Nussinov R. Structural motifs at protein-protein interfaces: protein cores versus two-state and three-state model complexes. Protein Sci. 1997 Sep;6(9):1793–1805. doi: 10.1002/pro.5560060901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tsumoto K., Ogasahara K., Ueda Y., Watanabe K., Yutani K., Kumagai I. Role of Tyr residues in the contact region of anti-lysozyme monoclonal antibody HyHEL10 for antigen binding. J Biol Chem. 1995 Aug 4;270(31):18551–18557. doi: 10.1074/jbc.270.31.18551. [DOI] [PubMed] [Google Scholar]
  42. Tsumoto K., Ogasahara K., Ueda Y., Watanabe K., Yutani K., Kumagai I. Role of salt bridge formation in antigen-antibody interaction. Entropic contribution to the complex between hen egg white lysozyme and its monoclonal antibody HyHEL10. J Biol Chem. 1996 Dec 20;271(51):32612–32616. doi: 10.1074/jbc.271.51.32612. [DOI] [PubMed] [Google Scholar]
  43. Van Oss C. J. Hydrophobic, hydrophilic and other interactions in epitope-paratope binding. Mol Immunol. 1995 Feb;32(3):199–211. doi: 10.1016/0161-5890(94)00124-j. [DOI] [PubMed] [Google Scholar]
  44. Wells J. A. Systematic mutational analyses of protein-protein interfaces. Methods Enzymol. 1991;202:390–411. doi: 10.1016/0076-6879(91)02020-a. [DOI] [PubMed] [Google Scholar]
  45. Williams D. C., Jr, Benjamin D. C., Poljak R. J., Rule G. S. Global changes in amide hydrogen exchange rates for a protein antigen in complex with three different antibodies. J Mol Biol. 1996 Apr 12;257(4):866–876. doi: 10.1006/jmbi.1996.0207. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES