Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Sep;7(9):1884–1897. doi: 10.1002/pro.5560070905

Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design.

J Liang 1, H Edelsbrunner 1, C Woodward 1
PMCID: PMC2144175  PMID: 9761470

Abstract

Identification and size characterization of surface pockets and occluded cavities are initial steps in protein structure-based ligand design. A new program, CAST, for automatically locating and measuring protein pockets and cavities, is based on precise computational geometry methods, including alpha shape and discrete flow theory. CAST identifies and measures pockets and pocket mouth openings, as well as cavities. The program specifies the atoms lining pockets, pocket openings, and buried cavities; the volume and area of pockets and cavities; and the area and circumference of mouth openings. CAST analysis of over 100 proteins has been carried out; proteins examined include a set of 51 monomeric enzyme-ligand structures, several elastase-inhibitor complexes, the FK506 binding protein, 30 HIV-1 protease-inhibitor complexes, and a number of small and large protein inhibitors. Medium-sized globular proteins typically have 10-20 pockets/cavities. Most often, binding sites are pockets with 1-2 mouth openings; much less frequently they are cavities. Ligand binding pockets vary widely in size, most within the range 10(2)-10(3)A3. Statistical analysis reveals that the number of pockets and cavities is correlated with protein size, but there is no correlation between the size of the protein and the size of binding sites. Most frequently, the largest pocket/cavity is the active site, but there are a number of instructive exceptions. Ligand volume and binding site volume are somewhat correlated when binding site volume is < or =700 A3, but the ligand seldom occupies the entire site. Auxiliary pockets near the active site have been suggested as additional binding surface for designed ligands (Mattos C et al., 1994, Nat Struct Biol 1:55-58). Analysis of elastase-inhibitor complexes suggests that CAST can identify ancillary pockets suitable for recruitment in ligand design strategies. Analysis of the FK506 binding protein, and of compounds developed in SAR by NMR (Shuker SB et al., 1996, Science 274:1531-1534), indicates that CAST pocket computation may provide a priori identification of target proteins for linked-fragment design. CAST analysis of 30 HIV-1 protease-inhibitor complexes shows that the flexible active site pocket can vary over a range of 853-1,566 A3, and that there are two pockets near or adjoining the active site that may be recruited for ligand design.

Full Text

The Full Text of this article is available as a PDF (8.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Delaney J. S. Finding and filling protein cavities using cellular logic operations. J Mol Graph. 1992 Sep;10(3):174-7, 163. doi: 10.1016/0263-7855(92)80052-f. [DOI] [PubMed] [Google Scholar]
  2. DesJarlais R. L., Sheridan R. P., Seibel G. L., Dixon J. S., Kuntz I. D., Venkataraghavan R. Using shape complementarity as an initial screen in designing ligands for a receptor binding site of known three-dimensional structure. J Med Chem. 1988 Apr;31(4):722–729. doi: 10.1021/jm00399a006. [DOI] [PubMed] [Google Scholar]
  3. Finney J. L. Volume occupation, environment and accessibility in proteins. The problem of the protein surface. J Mol Biol. 1975 Aug 25;96(4):721–732. doi: 10.1016/0022-2836(75)90148-5. [DOI] [PubMed] [Google Scholar]
  4. Gellatly B. J., Finney J. L. Calculation of protein volumes: an alternative to the Voronoi procedure. J Mol Biol. 1982 Oct 25;161(2):305–322. doi: 10.1016/0022-2836(82)90155-3. [DOI] [PubMed] [Google Scholar]
  5. Gerstein M., Tsai J., Levitt M. The volume of atoms on the protein surface: calculated from simulation, using Voronoi polyhedra. J Mol Biol. 1995 Jun 23;249(5):955–966. doi: 10.1006/jmbi.1995.0351. [DOI] [PubMed] [Google Scholar]
  6. Hubbard S. J., Gross K. H., Argos P. Intramolecular cavities in globular proteins. Protein Eng. 1994 May;7(5):613–626. doi: 10.1093/protein/7.5.613. [DOI] [PubMed] [Google Scholar]
  7. Humphrey W., Dalke A., Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996 Feb;14(1):33-8, 27-8. doi: 10.1016/0263-7855(96)00018-5. [DOI] [PubMed] [Google Scholar]
  8. Kim S., Liang J., Barry B. A. Chemical complementation identifies a proton acceptor for redox-active tyrosine D in photosystem II. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14406–14411. doi: 10.1073/pnas.94.26.14406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kleywegt G. J., Jones T. A. Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallogr D Biol Crystallogr. 1994 Mar 1;50(Pt 2):178–185. doi: 10.1107/S0907444993011333. [DOI] [PubMed] [Google Scholar]
  10. Kuntz I. D., Blaney J. M., Oatley S. J., Langridge R., Ferrin T. E. A geometric approach to macromolecule-ligand interactions. J Mol Biol. 1982 Oct 25;161(2):269–288. doi: 10.1016/0022-2836(82)90153-x. [DOI] [PubMed] [Google Scholar]
  11. Laskowski R. A. SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J Mol Graph. 1995 Oct;13(5):323-30, 307-8. doi: 10.1016/0263-7855(95)00073-9. [DOI] [PubMed] [Google Scholar]
  12. Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
  13. Levitt D. G., Banaszak L. J. POCKET: a computer graphics method for identifying and displaying protein cavities and their surrounding amino acids. J Mol Graph. 1992 Dec;10(4):229–234. doi: 10.1016/0263-7855(92)80074-n. [DOI] [PubMed] [Google Scholar]
  14. Liang J., McGee M. P. Hydration structure of antithrombin conformers and water transfer during reactive loop insertion. Biophys J. 1998 Aug;75(2):573–582. doi: 10.1016/S0006-3495(98)77548-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Liang J., Subramaniam S. Computation of molecular electrostatics with boundary element methods. Biophys J. 1997 Oct;73(4):1830–1841. doi: 10.1016/S0006-3495(97)78213-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lin S. L., Nussinov R., Fischer D., Wolfson H. J. Molecular surface representations by sparse critical points. Proteins. 1994 Jan;18(1):94–101. doi: 10.1002/prot.340180111. [DOI] [PubMed] [Google Scholar]
  17. Mattos C., Giammona D. A., Petsko G. A., Ringe D. Structural analysis of the active site of porcine pancreatic elastase based on the X-ray crystal structures of complexes with trifluoroacetyl-dipeptide-anilide inhibitors. Biochemistry. 1995 Mar 14;34(10):3193–3203. doi: 10.1021/bi00010a008. [DOI] [PubMed] [Google Scholar]
  18. Mattos C., Rasmussen B., Ding X., Petsko G. A., Ringe D. Analogous inhibitors of elastase do not always bind analogously. Nat Struct Biol. 1994 Jan;1(1):55–58. doi: 10.1038/nsb0194-55. [DOI] [PubMed] [Google Scholar]
  19. Mattos C., Ringe D. Locating and characterizing binding sites on proteins. Nat Biotechnol. 1996 May;14(5):595–599. doi: 10.1038/nbt0596-595. [DOI] [PubMed] [Google Scholar]
  20. McGee M. P., Teuschler H., Liang J. Effective electrostatic charge of coagulation factor X in solution and on phospholipid membranes: implications for activation mechanisms and structure-function relationships of the Gla domain. Biochem J. 1998 Feb 15;330(Pt 1):533–539. doi: 10.1042/bj3300533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Munson P. J., Singh R. K. Statistical significance of hierarchical multi-body potentials based on Delaunay tessellation and their application in sequence-structure alignment. Protein Sci. 1997 Jul;6(7):1467–1481. doi: 10.1002/pro.5560060711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Navia M. A., Fitzgerald P. M., McKeever B. M., Leu C. T., Heimbach J. C., Herber W. K., Sigal I. S., Darke P. L., Springer J. P. Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1. Nature. 1989 Feb 16;337(6208):615–620. doi: 10.1038/337615a0. [DOI] [PubMed] [Google Scholar]
  23. Rashin A. A., Iofin M., Honig B. Internal cavities and buried waters in globular proteins. Biochemistry. 1986 Jun 17;25(12):3619–3625. doi: 10.1021/bi00360a021. [DOI] [PubMed] [Google Scholar]
  24. Richards F. M. Areas, volumes, packing and protein structure. Annu Rev Biophys Bioeng. 1977;6:151–176. doi: 10.1146/annurev.bb.06.060177.001055. [DOI] [PubMed] [Google Scholar]
  25. Sayle R. A., Milner-White E. J. RASMOL: biomolecular graphics for all. Trends Biochem Sci. 1995 Sep;20(9):374–374. doi: 10.1016/s0968-0004(00)89080-5. [DOI] [PubMed] [Google Scholar]
  26. Shuker S. B., Hajduk P. J., Meadows R. P., Fesik S. W. Discovering high-affinity ligands for proteins: SAR by NMR. Science. 1996 Nov 29;274(5292):1531–1534. doi: 10.1126/science.274.5292.1531. [DOI] [PubMed] [Google Scholar]
  27. Singh R. K., Tropsha A., Vaisman I. I. Delaunay tessellation of proteins: four body nearest-neighbor propensities of amino acid residues. J Comput Biol. 1996 Summer;3(2):213–221. doi: 10.1089/cmb.1996.3.213. [DOI] [PubMed] [Google Scholar]
  28. Smart O. S., Goodfellow J. M., Wallace B. A. The pore dimensions of gramicidin A. Biophys J. 1993 Dec;65(6):2455–2460. doi: 10.1016/S0006-3495(93)81293-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Van Duyne G. D., Standaert R. F., Karplus P. A., Schreiber S. L., Clardy J. Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J Mol Biol. 1993 Jan 5;229(1):105–124. doi: 10.1006/jmbi.1993.1012. [DOI] [PubMed] [Google Scholar]
  30. Vondrasek J., Wlodawer A. Database of HIV proteinase structures. Trends Biochem Sci. 1997 May;22(5):183–183. doi: 10.1016/s0968-0004(97)01024-4. [DOI] [PubMed] [Google Scholar]
  31. Voorintholt R., Kosters M. T., Vegter G., Vriend G., Hol W. G. A very fast program for visualizing protein surfaces, channels and cavities. J Mol Graph. 1989 Dec;7(4):243–245. doi: 10.1016/0263-7855(89)80010-4. [DOI] [PubMed] [Google Scholar]
  32. Williams M. A., Goodfellow J. M., Thornton J. M. Buried waters and internal cavities in monomeric proteins. Protein Sci. 1994 Aug;3(8):1224–1235. doi: 10.1002/pro.5560030808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wlodawer A., Erickson J. W. Structure-based inhibitors of HIV-1 protease. Annu Rev Biochem. 1993;62:543–585. doi: 10.1146/annurev.bi.62.070193.002551. [DOI] [PubMed] [Google Scholar]
  34. Wlodawer A., Miller M., Jaskólski M., Sathyanarayana B. K., Baldwin E., Weber I. T., Selk L. M., Clawson L., Schneider J., Kent S. B. Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease. Science. 1989 Aug 11;245(4918):616–621. doi: 10.1126/science.2548279. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES