Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Nov;8(11):2424–2427. doi: 10.1110/ps.8.11.2424

Using genomic information to investigate the function of ThiI, an enzyme shared between thiamin and 4-thiouridine biosynthesis.

E G Mueller 1, P M Palenchar 1
PMCID: PMC2144177  PMID: 10595545

Abstract

The gene thiI encodes a protein (ThiI) that plays a role in the transfer of sulfur from cysteine to both thiamin and 4-thiouridine, but the reaction catalyzed by ThiI remains undetermined. Based upon sequence alignments, ThiI shares a unique "P-loop" motif with the PPi synthetase family, four enzymes that catalyze adenylation and subsequent substitution of carbonyl oxygens. To test whether or not this motif is critical for ThiI function, the Asp in the motif was converted to Ala (D189A), and a screen for in vivo 4-thiouridine production revealed the altered enzyme to be inactive. Further scrutiny of sequence data and the crystal structures of two members of the PPi synthetase family implicated Lys321 in the proposed adenylation function of ThiI, and the critical nature of Lys321 has been demonstrated by site-directed mutagenesis and genetic screening. Our results, then, indicate that ThiI catalyzes the adenylation of a substrate at the expense of ATP, a narrowing of possible reactions that provides a strong new basis for deducing the early steps in the transfer of sulfur from cysteine to both thiamin and 4-thiouridine.

Full Text

The Full Text of this article is available as a PDF (221.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bergstrom D. E., Leonard N. J. Photoreaction of 4-thiouracil with cytosine. Relation to photoreactions in Escherichia coli transfer ribonucleic acids. Biochemistry. 1972 Jan 4;11(1):1–9. doi: 10.1021/bi00751a001. [DOI] [PubMed] [Google Scholar]
  4. Bork P., Koonin E. V. A P-loop-like motif in a widespread ATP pyrophosphatase domain: implications for the evolution of sequence motifs and enzyme activity. Proteins. 1994 Dec;20(4):347–355. doi: 10.1002/prot.340200407. [DOI] [PubMed] [Google Scholar]
  5. Carré D. S., Thomas G., Favre A. Conformation and functioning of tRNAs: cross-linked tRNAs as substrate for tRNA nucleotidyl-transferase and aminoacyl synthetases. Biochimie. 1974;56(8):1089–1101. doi: 10.1016/s0300-9084(74)80097-0. [DOI] [PubMed] [Google Scholar]
  6. Favre A., Michelson A. M., Yaniv M. Photochemistry of 4-thiouridine in Escherichia coli transfer RNA1Val. J Mol Biol. 1971 May 28;58(1):367–379. doi: 10.1016/0022-2836(71)90252-x. [DOI] [PubMed] [Google Scholar]
  7. Favre A., Yaniv M., Michelson A. M. The photochemistry of 4-thiouridine in Escherichia coli t-RNA Vał1. Biochem Biophys Res Commun. 1969 Oct 8;37(2):266–271. doi: 10.1016/0006-291x(69)90729-3. [DOI] [PubMed] [Google Scholar]
  8. Mueller E. G., Buck C. J., Palenchar P. M., Barnhart L. E., Paulson J. L. Identification of a gene involved in the generation of 4-thiouridine in tRNA. Nucleic Acids Res. 1998 Jun 1;26(11):2606–2610. doi: 10.1093/nar/26.11.2606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ramabhadran T. V., Jagger J. Mechanism of growth delay induced in Escherichia coli by near ultraviolet radiation. Proc Natl Acad Sci U S A. 1976 Jan;73(1):59–63. doi: 10.1073/pnas.73.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rizzi M., Nessi C., Mattevi A., Coda A., Bolognesi M., Galizzi A. Crystal structure of NH3-dependent NAD+ synthetase from Bacillus subtilis. EMBO J. 1996 Oct 1;15(19):5125–5134. [PMC free article] [PubMed] [Google Scholar]
  11. Ryals J., Hsu R. Y., Lipsett M. N., Bremer H. Isolation of single-site Escherichia coli mutants deficient in thiamine and 4-thiouridine syntheses: identification of a nuvC mutant. J Bacteriol. 1982 Aug;151(2):899–904. doi: 10.1128/jb.151.2.899-904.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Siegele D. A., Hu J. C. Gene expression from plasmids containing the araBAD promoter at subsaturating inducer concentrations represents mixed populations. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8168–8172. doi: 10.1073/pnas.94.15.8168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Taylor S. V., Kelleher N. L., Kinsland C., Chiu H. J., Costello C. A., Backstrom A. D., McLafferty F. W., Begley T. P. Thiamin biosynthesis in Escherichia coli. Identification of ThiS thiocarboxylate as the immediate sulfur donor in the thiazole formation. J Biol Chem. 1998 Jun 26;273(26):16555–16560. doi: 10.1074/jbc.273.26.16555. [DOI] [PubMed] [Google Scholar]
  14. Tesmer J. J., Klem T. J., Deras M. L., Davisson V. J., Smith J. L. The crystal structure of GMP synthetase reveals a novel catalytic triad and is a structural paradigm for two enzyme families. Nat Struct Biol. 1996 Jan;3(1):74–86. doi: 10.1038/nsb0196-74. [DOI] [PubMed] [Google Scholar]
  15. Webb E., Claas K., Downs D. M. Characterization of thiI, a new gene involved in thiazole biosynthesis in Salmonella typhimurium. J Bacteriol. 1997 Jul;179(13):4399–4402. doi: 10.1128/jb.179.13.4399-4402.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES