Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Nov;8(11):2234–2244. doi: 10.1110/ps.8.11.2234

The turn sequence directs beta-strand alignment in designed beta-hairpins.

E de Alba 1, M Rico 1, M A Jiménez 1
PMCID: PMC2144178  PMID: 10595526

Abstract

A previous NMR investigation of model decapeptides with identical beta-strand sequences and different turn sequences demonstrated that, in these peptide systems, the turn residues played a more predominant role in defining the type of beta-hairpin adopted than cross-strand side-chain interactions. This result needed to be tested in longer beta-hairpin forming peptides, containing more potentially stabilizing cross-strand hydrogen bonds and side-chain interactions that might counterbalance the influence of the turn sequence. In that direction, we report here on the design and 1H NMR conformational study of three beta-hairpin forming pentadecapeptides. The design consists of adding two and three residues at the N- and C-termini, respectively, of the previously studied decapeptides. One of the designed pentadecapeptides includes a potentially stabilizing R-E salt bridge to investigate the influence of this interaction on beta-hairpin stability. We suggest that this peptide self-associates by forming intermolecular salt bridges. The other two pentadecapeptides behave as monomers. A conformational analysis of their 1H NMR spectra reveals that they adopt different types of beta-hairpin structure despite having identical strand sequences. Hence, the beta-turn sequence drives beta-hairpin formation in the investigated pentadecapeptides that adopt beta-hairpins that are longer than the average protein beta-hairpins. These results reinforce our previous suggestion concerning the key role played by the turn sequence in directing the kind of beta-hairpin formed by designed peptides.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aurora R., Rose G. D. Helix capping. Protein Sci. 1998 Jan;7(1):21–38. doi: 10.1002/pro.5560070103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baldwin R. L. Alpha-helix formation by peptides of defined sequence. Biophys Chem. 1995 Jun-Jul;55(1-2):127–135. doi: 10.1016/0301-4622(94)00146-b. [DOI] [PubMed] [Google Scholar]
  3. Blanco F. J., Jiménez M. A., Pineda A., Rico M., Santoro J., Nieto J. L. NMR solution structure of the isolated N-terminal fragment of protein-G B1 domain. Evidence of trifluoroethanol induced native-like beta-hairpin formation. Biochemistry. 1994 May 17;33(19):6004–6014. doi: 10.1021/bi00185a041. [DOI] [PubMed] [Google Scholar]
  4. Blanco F. J., Rivas G., Serrano L. A short linear peptide that folds into a native stable beta-hairpin in aqueous solution. Nat Struct Biol. 1994 Sep;1(9):584–590. doi: 10.1038/nsb0994-584. [DOI] [PubMed] [Google Scholar]
  5. Blanco F., Ramírez-Alvarado M., Serrano L. Formation and stability of beta-hairpin structures in polypeptides. Curr Opin Struct Biol. 1998 Feb;8(1):107–111. doi: 10.1016/s0959-440x(98)80017-1. [DOI] [PubMed] [Google Scholar]
  6. Case D. A., Dyson H. J., Wright P. E. Use of chemical shifts and coupling constants in nuclear magnetic resonance structural studies on peptides and proteins. Methods Enzymol. 1994;239:392–416. doi: 10.1016/s0076-6879(94)39015-0. [DOI] [PubMed] [Google Scholar]
  7. Chou P. Y., Fasman G. D. Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry. 1974 Jan 15;13(2):211–222. doi: 10.1021/bi00699a001. [DOI] [PubMed] [Google Scholar]
  8. Cox J. P., Evans P. A., Packman L. C., Williams D. H., Woolfson D. N. Dissecting the structure of a partially folded protein. Circular dichroism and nuclear magnetic resonance studies of peptides from ubiquitin. J Mol Biol. 1993 Nov 20;234(2):483–492. doi: 10.1006/jmbi.1993.1600. [DOI] [PubMed] [Google Scholar]
  9. Delepierre M., Dobson C. M., Karplus M., Poulsen F. M., States D. J., Wedin R. E. Electrostatic effects and hydrogen exchange behaviour in proteins. The pH dependence of exchange rates in lysozyme. J Mol Biol. 1987 Sep 5;197(1):111–130. doi: 10.1016/0022-2836(87)90613-9. [DOI] [PubMed] [Google Scholar]
  10. Dyson H. J., Wright P. E. Defining solution conformations of small linear peptides. Annu Rev Biophys Biophys Chem. 1991;20:519–538. doi: 10.1146/annurev.bb.20.060191.002511. [DOI] [PubMed] [Google Scholar]
  11. Gellman S. H. Minimal model systems for beta sheet secondary structure in proteins. Curr Opin Chem Biol. 1998 Dec;2(6):717–725. doi: 10.1016/s1367-5931(98)80109-9. [DOI] [PubMed] [Google Scholar]
  12. Gunasekaran K., Ramakrishnan C., Balaram P. Beta-hairpins in proteins revisited: lessons for de novo design. Protein Eng. 1997 Oct;10(10):1131–1141. doi: 10.1093/protein/10.10.1131. [DOI] [PubMed] [Google Scholar]
  13. Güntert P., Braun W., Wüthrich K. Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. J Mol Biol. 1991 Feb 5;217(3):517–530. doi: 10.1016/0022-2836(91)90754-t. [DOI] [PubMed] [Google Scholar]
  14. Hutchinson E. G., Sessions R. B., Thornton J. M., Woolfson D. N. Determinants of strand register in antiparallel beta-sheets of proteins. Protein Sci. 1998 Nov;7(11):2287–2300. doi: 10.1002/pro.5560071106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hutchinson E. G., Thornton J. M. A revised set of potentials for beta-turn formation in proteins. Protein Sci. 1994 Dec;3(12):2207–2216. doi: 10.1002/pro.5560031206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kim C. A., Berg J. M. Thermodynamic beta-sheet propensities measured using a zinc-finger host peptide. Nature. 1993 Mar 18;362(6417):267–270. doi: 10.1038/362267a0. [DOI] [PubMed] [Google Scholar]
  17. Kim P. S., Baldwin R. L. Intermediates in the folding reactions of small proteins. Annu Rev Biochem. 1990;59:631–660. doi: 10.1146/annurev.bi.59.070190.003215. [DOI] [PubMed] [Google Scholar]
  18. Kumar A., Ernst R. R., Wüthrich K. A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. Biochem Biophys Res Commun. 1980 Jul 16;95(1):1–6. doi: 10.1016/0006-291x(80)90695-6. [DOI] [PubMed] [Google Scholar]
  19. Lifson S., Sander C. Specific recognition in the tertiary structure of beta-sheets of proteins. J Mol Biol. 1980 Jun 5;139(4):627–639. doi: 10.1016/0022-2836(80)90052-2. [DOI] [PubMed] [Google Scholar]
  20. Lyu P. C., Wemmer D. E., Zhou H. X., Pinker R. J., Kallenbach N. R. Capping interactions in isolated alpha helices: position-dependent substitution effects and structure of a serine-capped peptide helix. Biochemistry. 1993 Jan 19;32(2):421–425. doi: 10.1021/bi00053a006. [DOI] [PubMed] [Google Scholar]
  21. Marqusee S., Baldwin R. L. Helix stabilization by Glu-...Lys+ salt bridges in short peptides of de novo design. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8898–8902. doi: 10.1073/pnas.84.24.8898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Merutka G., Stellwagen E. Effect of amino acid ion pairs on peptide helicity. Biochemistry. 1991 Feb 12;30(6):1591–1594. doi: 10.1021/bi00220a021. [DOI] [PubMed] [Google Scholar]
  23. Minor D. L., Jr, Kim P. S. Measurement of the beta-sheet-forming propensities of amino acids. Nature. 1994 Feb 17;367(6464):660–663. doi: 10.1038/367660a0. [DOI] [PubMed] [Google Scholar]
  24. Muga A., Surewicz W. K., Wong P. T., Mantsch H. H. Structural studies with the uveopathogenic peptide M derived from retinal S-antigen. Biochemistry. 1990 Mar 27;29(12):2925–2930. doi: 10.1021/bi00464a006. [DOI] [PubMed] [Google Scholar]
  25. Muñoz V., Henry E. R., Hofrichter J., Eaton W. A. A statistical mechanical model for beta-hairpin kinetics. Proc Natl Acad Sci U S A. 1998 May 26;95(11):5872–5879. doi: 10.1073/pnas.95.11.5872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Muñoz V., Serrano L. Elucidating the folding problem of helical peptides using empirical parameters. Nat Struct Biol. 1994 Jun;1(6):399–409. doi: 10.1038/nsb0694-399. [DOI] [PubMed] [Google Scholar]
  27. Muñoz V., Serrano L. Intrinsic secondary structure propensities of the amino acids, using statistical phi-psi matrices: comparison with experimental scales. Proteins. 1994 Dec;20(4):301–311. doi: 10.1002/prot.340200403. [DOI] [PubMed] [Google Scholar]
  28. Muñoz V., Thompson P. A., Hofrichter J., Eaton W. A. Folding dynamics and mechanism of beta-hairpin formation. Nature. 1997 Nov 13;390(6656):196–199. doi: 10.1038/36626. [DOI] [PubMed] [Google Scholar]
  29. Ramírez-Alvarado M., Blanco F. J., Niemann H., Serrano L. Role of beta-turn residues in beta-hairpin formation and stability in designed peptides. J Mol Biol. 1997 Nov 7;273(4):898–912. doi: 10.1006/jmbi.1997.1347. [DOI] [PubMed] [Google Scholar]
  30. Ramírez-Alvarado M., Blanco F. J., Serrano L. De novo design and structural analysis of a model beta-hairpin peptide system. Nat Struct Biol. 1996 Jul;3(7):604–612. doi: 10.1038/nsb0796-604. [DOI] [PubMed] [Google Scholar]
  31. Rietman B. H., Folkers P. J., Folmer R. H., Tesser G. I., Hilbers C. W. The solution structure of the synthetic circular peptide CGVSRQGKPYC. NMR studies of the folding of a synthetic model for the DNA-binding loop of the ssDNA-binding protein encoded by gene V of phage M13. Eur J Biochem. 1996 Jun 15;238(3):706–713. doi: 10.1111/j.1432-1033.1996.0706w.x. [DOI] [PubMed] [Google Scholar]
  32. Scholtz J. M., Baldwin R. L. The mechanism of alpha-helix formation by peptides. Annu Rev Biophys Biomol Struct. 1992;21:95–118. doi: 10.1146/annurev.bb.21.060192.000523. [DOI] [PubMed] [Google Scholar]
  33. Scholtz J. M., Qian H., Robbins V. H., Baldwin R. L. The energetics of ion-pair and hydrogen-bonding interactions in a helical peptide. Biochemistry. 1993 Sep 21;32(37):9668–9676. doi: 10.1021/bi00088a019. [DOI] [PubMed] [Google Scholar]
  34. Schönbrunner N., Pappenberger G., Scharf M., Engels J., Kiefhaber T. Effect of preformed correct tertiary interactions on rapid two-state tendamistat folding: evidence for hairpins as initiation sites for beta-sheet formation. Biochemistry. 1997 Jul 22;36(29):9057–9065. doi: 10.1021/bi970594r. [DOI] [PubMed] [Google Scholar]
  35. Searle M. S., Williams D. H., Packman L. C. A short linear peptide derived from the N-terminal sequence of ubiquitin folds into a water-stable non-native beta-hairpin. Nat Struct Biol. 1995 Nov;2(11):999–1006. doi: 10.1038/nsb1195-999. [DOI] [PubMed] [Google Scholar]
  36. Searle M. S., Zerella R., Williams D. H., Packman L. C. Native-like beta-hairpin structure in an isolated fragment from ferredoxin: NMR and CD studies of solvent effects on the N-terminal 20 residues. Protein Eng. 1996 Jul;9(7):559–565. doi: 10.1093/protein/9.7.559. [DOI] [PubMed] [Google Scholar]
  37. Sibanda B. L., Blundell T. L., Thornton J. M. Conformation of beta-hairpins in protein structures. A systematic classification with applications to modelling by homology, electron density fitting and protein engineering. J Mol Biol. 1989 Apr 20;206(4):759–777. doi: 10.1016/0022-2836(89)90583-4. [DOI] [PubMed] [Google Scholar]
  38. Sibanda B. L., Thornton J. M. Beta-hairpin families in globular proteins. Nature. 1985 Jul 11;316(6024):170–174. doi: 10.1038/316170a0. [DOI] [PubMed] [Google Scholar]
  39. Sibanda B. L., Thornton J. M. Conformation of beta hairpins in protein structures: classification and diversity in homologous structures. Methods Enzymol. 1991;202:59–82. doi: 10.1016/0076-6879(91)02007-v. [DOI] [PubMed] [Google Scholar]
  40. Smith C. K., Regan L. Guidelines for protein design: the energetics of beta sheet side chain interactions. Science. 1995 Nov 10;270(5238):980–982. doi: 10.1126/science.270.5238.980. [DOI] [PubMed] [Google Scholar]
  41. Smith C. K., Withka J. M., Regan L. A thermodynamic scale for the beta-sheet forming tendencies of the amino acids. Biochemistry. 1994 May 10;33(18):5510–5517. doi: 10.1021/bi00184a020. [DOI] [PubMed] [Google Scholar]
  42. Swindells M. B., MacArthur M. W., Thornton J. M. Intrinsic phi, psi propensities of amino acids, derived from the coil regions of known structures. Nat Struct Biol. 1995 Jul;2(7):596–603. doi: 10.1038/nsb0795-596. [DOI] [PubMed] [Google Scholar]
  43. Tanford C. Protein denaturation. Adv Protein Chem. 1968;23:121–282. doi: 10.1016/s0065-3233(08)60401-5. [DOI] [PubMed] [Google Scholar]
  44. Wilmot C. M., Thornton J. M. Analysis and prediction of the different types of beta-turn in proteins. J Mol Biol. 1988 Sep 5;203(1):221–232. doi: 10.1016/0022-2836(88)90103-9. [DOI] [PubMed] [Google Scholar]
  45. Wishart D. S., Sykes B. D. Chemical shifts as a tool for structure determination. Methods Enzymol. 1994;239:363–392. doi: 10.1016/s0076-6879(94)39014-2. [DOI] [PubMed] [Google Scholar]
  46. Wouters M. A., Curmi P. M. An analysis of side chain interactions and pair correlations within antiparallel beta-sheets: the differences between backbone hydrogen-bonded and non-hydrogen-bonded residue pairs. Proteins. 1995 Jun;22(2):119–131. doi: 10.1002/prot.340220205. [DOI] [PubMed] [Google Scholar]
  47. Wüthrich K., Billeter M., Braun W. Polypeptide secondary structure determination by nuclear magnetic resonance observation of short proton-proton distances. J Mol Biol. 1984 Dec 15;180(3):715–740. doi: 10.1016/0022-2836(84)90034-2. [DOI] [PubMed] [Google Scholar]
  48. Zhou N. E., Kay C. M., Sykes B. D., Hodges R. S. A single-stranded amphipathic alpha-helix in aqueous solution: design, structural characterization, and its application for determining alpha-helical propensities of amino acids. Biochemistry. 1993 Jun 22;32(24):6190–6197. doi: 10.1021/bi00075a011. [DOI] [PubMed] [Google Scholar]
  49. de Alba E., Blanco F. J., Jiménez M. A., Rico M., Nieto J. L. Interactions responsible for the pH dependence of the beta-hairpin conformational population formed by a designed linear peptide. Eur J Biochem. 1995 Oct 1;233(1):283–292. doi: 10.1111/j.1432-1033.1995.283_1.x. [DOI] [PubMed] [Google Scholar]
  50. de Alba E., Jiménez M. A., Rico M., Nieto J. L. Conformational investigation of designed short linear peptides able to fold into beta-hairpin structures in aqueous solution. Fold Des. 1996;1(2):133–144. doi: 10.1016/s1359-0278(96)00022-3. [DOI] [PubMed] [Google Scholar]
  51. de Alba E., Rico M., Jiménez M. A. Cross-strand side-chain interactions versus turn conformation in beta-hairpins. Protein Sci. 1997 Dec;6(12):2548–2560. doi: 10.1002/pro.5560061207. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES