Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Nov;8(11):2428–2437. doi: 10.1110/ps.8.11.2428

A test case for structure-based functional assignment: the 1.2 A crystal structure of the yjgF gene product from Escherichia coli.

K Volz 1
PMCID: PMC2144179  PMID: 10595546

Abstract

The YER057c/YIL051c/YjgF protein family is a set of 24 full-length homologs, each approximately 130 residues in length, and each with no known function or relationship to proteins of known structure. To determine the function of this family, the structure of one member--the YjgF protein from Escherichia coli--was solved and refined at a resolution of 1.2 A. The YjgF molecule is a homotrimer with exact threefold symmetry. Its tertiary and quaternary structures are related to that of Bacillus subtilis chorismate mutase, although their active sites are completely different. The YjgF protein has an active site curiously similar to protein tyrosine phosphatases, including a covalently modified cysteine, but it is unlikely to be functionally related. The lessons learned from this attempt to deduce function from structure may be useful to future projects in structural genomics.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abola E. E., Sussman J. L., Prilusky J., Manning N. O. Protein Data Bank archives of three-dimensional macromolecular structures. Methods Enzymol. 1997;277:556–571. doi: 10.1016/s0076-6879(97)77031-9. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Babbitt P. C., Mrachko G. T., Hasson M. S., Huisman G. W., Kolter R., Ringe D., Petsko G. A., Kenyon G. L., Gerlt J. A. A functionally diverse enzyme superfamily that abstracts the alpha protons of carboxylic acids. Science. 1995 Feb 24;267(5201):1159–1161. doi: 10.1126/science.7855594. [DOI] [PubMed] [Google Scholar]
  4. Barford D., Das A. K., Egloff M. P. The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu Rev Biophys Biomol Struct. 1998;27:133–164. doi: 10.1146/annurev.biophys.27.1.133. [DOI] [PubMed] [Google Scholar]
  5. Burland V., Plunkett G., 3rd, Sofia H. J., Daniels D. L., Blattner F. R. Analysis of the Escherichia coli genome VI: DNA sequence of the region from 92.8 through 100 minutes. Nucleic Acids Res. 1995 Jun 25;23(12):2105–2119. doi: 10.1093/nar/23.12.2105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ceciliani F., Faotto L., Negri A., Colombo I., Berra B., Bartorelli A., Ronchi S. The primary structure of UK114 tumor antigen. FEBS Lett. 1996 Sep 16;393(2-3):147–150. doi: 10.1016/0014-5793(96)00850-2. [DOI] [PubMed] [Google Scholar]
  7. Chook Y. M., Gray J. V., Ke H., Lipscomb W. N. The monofunctional chorismate mutase from Bacillus subtilis. Structure determination of chorismate mutase and its complexes with a transition state analog and prephenate, and implications for the mechanism of the enzymatic reaction. J Mol Biol. 1994 Jul 29;240(5):476–500. doi: 10.1006/jmbi.1994.1462. [DOI] [PubMed] [Google Scholar]
  8. Chook Y. M., Ke H., Lipscomb W. N. Crystal structures of the monofunctional chorismate mutase from Bacillus subtilis and its complex with a transition state analog. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8600–8603. doi: 10.1073/pnas.90.18.8600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Colovos C., Cascio D., Yeates T. O. The 1.8 A crystal structure of the ycaC gene product from Escherichia coli reveals an octameric hydrolase of unknown specificity. Structure. 1998 Oct 15;6(10):1329–1337. doi: 10.1016/s0969-2126(98)00132-4. [DOI] [PubMed] [Google Scholar]
  10. Enos-Berlage J. L., Langendorf M. J., Downs D. M. Complex metabolic phenotypes caused by a mutation in yjgF, encoding a member of the highly conserved YER057c/YjgF family of proteins. J Bacteriol. 1998 Dec;180(24):6519–6528. doi: 10.1128/jb.180.24.6519-6528.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fauman E. B., Saper M. A. Structure and function of the protein tyrosine phosphatases. Trends Biochem Sci. 1996 Nov;21(11):413–417. doi: 10.1016/s0968-0004(96)10059-1. [DOI] [PubMed] [Google Scholar]
  12. Gloeckler R., Ohsawa I., Speck D., Ledoux C., Bernard S., Zinsius M., Villeval D., Kisou T., Kamogawa K., Lemoine Y. Cloning and characterization of the Bacillus sphaericus genes controlling the bioconversion of pimelate into dethiobiotin. Gene. 1990 Mar 1;87(1):63–70. doi: 10.1016/0378-1119(90)90496-e. [DOI] [PubMed] [Google Scholar]
  13. Goldstein D. J. An unacknowledged problem for structural genomics? Nat Biotechnol. 1998 Aug;16(8):696–696. doi: 10.1038/nbt0898-696. [DOI] [PubMed] [Google Scholar]
  14. Guan K. L., Dixon J. E. Evidence for protein-tyrosine-phosphatase catalysis proceeding via a cysteine-phosphate intermediate. J Biol Chem. 1991 Sep 15;266(26):17026–17030. [PubMed] [Google Scholar]
  15. Han K. S., Archer J. A., Sinskey A. J. The molecular structure of the Corynebacterium glutamicum threonine synthase gene. Mol Microbiol. 1990 Oct;4(10):1693–1702. doi: 10.1111/j.1365-2958.1990.tb00546.x. [DOI] [PubMed] [Google Scholar]
  16. Hendrickson W. A. Stereochemically restrained refinement of macromolecular structures. Methods Enzymol. 1985;115:252–270. doi: 10.1016/0076-6879(85)15021-4. [DOI] [PubMed] [Google Scholar]
  17. Holm L., Sander C. Protein structure comparison by alignment of distance matrices. J Mol Biol. 1993 Sep 5;233(1):123–138. doi: 10.1006/jmbi.1993.1489. [DOI] [PubMed] [Google Scholar]
  18. Hunt L. T., Dayhoff M. O. A surprising new protein superfamily containing ovalbumin, antithrombin-III, and alpha 1-proteinase inhibitor. Biochem Biophys Res Commun. 1980 Jul 31;95(2):864–871. doi: 10.1016/0006-291x(80)90867-0. [DOI] [PubMed] [Google Scholar]
  19. Jeffery C. J. Moonlighting proteins. Trends Biochem Sci. 1999 Jan;24(1):8–11. doi: 10.1016/s0968-0004(98)01335-8. [DOI] [PubMed] [Google Scholar]
  20. Joerger R. D., Jacobson M. R., Bishop P. E. Two nifA-like genes required for expression of alternative nitrogenases by Azotobacter vinelandii. J Bacteriol. 1989 Jun;171(6):3258–3267. doi: 10.1128/jb.171.6.3258-3267.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kim S. H. Shining a light on structural genomics. Nat Struct Biol. 1998 Aug;5 (Suppl):643–645. doi: 10.1038/1334. [DOI] [PubMed] [Google Scholar]
  22. Lima C. D., Klein M. G., Hendrickson W. A. Structure-based analysis of catalysis and substrate definition in the HIT protein family. Science. 1997 Oct 10;278(5336):286–290. doi: 10.1126/science.278.5336.286. [DOI] [PubMed] [Google Scholar]
  23. Löwe J., Amos L. A. Crystal structure of the bacterial cell-division protein FtsZ. Nature. 1998 Jan 8;391(6663):203–206. doi: 10.1038/34472. [DOI] [PubMed] [Google Scholar]
  24. Marchler-Bauer A., Bryant S. H. A measure of success in fold recognition. Trends Biochem Sci. 1997 Jul;22(7):236–240. doi: 10.1016/s0968-0004(97)01078-5. [DOI] [PubMed] [Google Scholar]
  25. Melloni E., Michetti M., Salamino F., Pontremoli S. Molecular and functional properties of a calpain activator protein specific for mu-isoforms. J Biol Chem. 1998 May 22;273(21):12827–12831. doi: 10.1074/jbc.273.21.12827. [DOI] [PubMed] [Google Scholar]
  26. Montelione G. T., Anderson S. Structural genomics: keystone for a Human Proteome Project. Nat Struct Biol. 1999 Jan;6(1):11–12. doi: 10.1038/4878. [DOI] [PubMed] [Google Scholar]
  27. Nogales E., Wolf S. G., Downing K. H. Structure of the alpha beta tubulin dimer by electron crystallography. Nature. 1998 Jan 8;391(6663):199–203. doi: 10.1038/34465. [DOI] [PubMed] [Google Scholar]
  28. Oka T., Tsuji H., Noda C., Sakai K., Hong Y. M., Suzuki I., Muñoz S., Natori Y. Isolation and characterization of a novel perchloric acid-soluble protein inhibiting cell-free protein synthesis. J Biol Chem. 1995 Dec 15;270(50):30060–30067. doi: 10.1074/jbc.270.50.30060. [DOI] [PubMed] [Google Scholar]
  29. Pannifer A. D., Flint A. J., Tonks N. K., Barford D. Visualization of the cysteinyl-phosphate intermediate of a protein-tyrosine phosphatase by x-ray crystallography. J Biol Chem. 1998 Apr 24;273(17):10454–10462. doi: 10.1074/jbc.273.17.10454. [DOI] [PubMed] [Google Scholar]
  30. Samuel S. J., Tzung S. P., Cohen S. A. Hrp12, a novel heat-responsive, tissue-specific, phosphorylated protein isolated from mouse liver. Hepatology. 1997 May;25(5):1213–1222. doi: 10.1002/hep.510250525. [DOI] [PubMed] [Google Scholar]
  31. Schmiedeknecht G., Kerkhoff C., Orsó E., Stöhr J., Aslanidis C., Nagy G. M., Knuechel R., Schmitz G. Isolation and characterization of a 14.5-kDa trichloroacetic-acid-soluble translational inhibitor protein from human monocytes that is upregulated upon cellular differentiation. Eur J Biochem. 1996 Dec 1;242(2):339–351. doi: 10.1111/j.1432-1033.1996.0339r.x. [DOI] [PubMed] [Google Scholar]
  32. Walton K. M., Dixon J. E. Protein tyrosine phosphatases. Annu Rev Biochem. 1993;62:101–120. doi: 10.1146/annurev.bi.62.070193.000533. [DOI] [PubMed] [Google Scholar]
  33. Wishart M. J., Denu J. M., Williams J. A., Dixon J. E. A single mutation converts a novel phosphotyrosine binding domain into a dual-specificity phosphatase. J Biol Chem. 1995 Nov 10;270(45):26782–26785. doi: 10.1074/jbc.270.45.26782. [DOI] [PubMed] [Google Scholar]
  34. Wishart M. J., Dixon J. E. Gathering STYX: phosphatase-like form predicts functions for unique protein-interaction domains. Trends Biochem Sci. 1998 Aug;23(8):301–306. doi: 10.1016/s0968-0004(98)01241-9. [DOI] [PubMed] [Google Scholar]
  35. Yang F., Gustafson K. R., Boyd M. R., Wlodawer A. Crystal structure of Escherichia coli HdeA. Nat Struct Biol. 1998 Sep;5(9):763–764. doi: 10.1038/1796. [DOI] [PubMed] [Google Scholar]
  36. Zarembinski T. I., Hung L. W., Mueller-Dieckmann H. J., Kim K. K., Yokota H., Kim R., Kim S. H. Structure-based assignment of the biochemical function of a hypothetical protein: a test case of structural genomics. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15189–15193. doi: 10.1073/pnas.95.26.15189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zhang Z. Y., Van Etten R. L. Leaving group dependence and proton inventory studies of the phosphorylation of a cytoplasmic phosphotyrosyl protein phosphatase from bovine heart. Biochemistry. 1991 Sep 17;30(37):8954–8959. doi: 10.1021/bi00101a006. [DOI] [PubMed] [Google Scholar]
  38. van Montfort R. L., Pijning T., Kalk K. H., Reizer J., Saier M. H., Jr, Thunnissen M. M., Robillard G. T., Dijkstra B. W. The structure of an energy-coupling protein from bacteria, IIBcellobiose, reveals similarity to eukaryotic protein tyrosine phosphatases. Structure. 1997 Feb 15;5(2):217–225. doi: 10.1016/s0969-2126(97)00180-9. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES