Abstract
A novel metallocarboxypeptidase (PfuCP) has been purified to homogeneity from the hyperthermophilic archaeon, Pyrococcus furiosus, with its intended use in C-terminal ladder sequencing of proteins and peptides at elevated temperatures. PfuCP was purified in its inactive state by the addition of ethylenediaminetetraacetic acid (EDTA) and dithiothreitol (DTT) to purification buffers, and the activity was restored by the addition of divalent cobalt (K, = 24 +/- 4 microM at 80 degrees C). The serine protease inhibitor phenylmethylsulfonyl fluoride (PMSF) had no effect on the activity. The molecular mass of monomeric PfuCP is 59 kDa as determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and 58 kDa by SDS-PAGE analysis. In solution, PfuCP exists as a homodimer of approximately 128 kDa as determined by gel filtration chromatography. The activity of PfuCP exhibits a temperature optimum exceeding 90 degrees C under ambient pressure, and a narrow pH optimum of 6.2-6.6. Addition of Co2+ to the apoPfuCP at room temperature does not alter its far-UV circular dichroism (CD) or its intrinsic fluorescence spectrum. Even when the CoPfuCP is heated to 80 degrees C, its far-UV CD shows a minimal change in the global conformation and the intrinsic fluorescence of aromatic residues shows only a partial quenching. Changes in the intrinsic fluorescence appear essentially reversible with temperature. Finally, the far-UV CD and intrinsic fluorescence data suggest that the overall structure of the holoenzyme is extremely thermostable. However, the activities of both the apo and holo enzyme exhibit a similar second-order decay over time, with 50% activity remaining after approximately 40 min at 80 degrees C. The N-blocked synthetic dipeptide, N-carbobenzoxy-Ala-Arg (ZAR), was used in the purification assay. The kinetic parameters at 80 degrees C with 0.4 mM CoCl2 were: Km, 0.9 +/- 0.1 mM; Vmax, 2,300 +/- 70 U mg(-1); and turn over number, 600 +/- 20 s(-1). Activity against other ZAX substrates (X = V, L, I, M, W, Y, F, N, A, S, H, K) revealed a broad specificity for neutral, aromatic, polar, and basic C-terminal residues. This broad specificity was confirmed by the C-terminal ladder sequencing of several synthetic and natural peptides, including porcine N-acetyl-renin substrate, for which we have observed (by MALDI-TOF MS) stepwise hydrolysis by PfuCP of up to seven residues from the C-terminus: Ac-Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu-Leu-Val-Tyr-Ser.
Full Text
The Full Text of this article is available as a PDF (605.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams M. W., Kelly R. M. Finding and using hyperthermophilic enzymes. Trends Biotechnol. 1998 Aug;16(8):329–332. doi: 10.1016/s0167-7799(98)01193-7. [DOI] [PubMed] [Google Scholar]
- Adams M. W., Kletzin A. Oxidoreductase-type enzymes and redox proteins involved in fermentative metabolisms of hyperthermophilic Archaea. Adv Protein Chem. 1996;48:101–180. doi: 10.1016/s0065-3233(08)60362-9. [DOI] [PubMed] [Google Scholar]
- Adams M. W., Perler F. B., Kelly R. M. Extremozymes: expanding the limits of biocatalysis. Biotechnology (N Y) 1995 Jul;13(7):662–668. doi: 10.1038/nbt0795-662. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Bryant F. O., Adams M. W. Characterization of hydrogenase from the hyperthermophilic archaebacterium, Pyrococcus furiosus. J Biol Chem. 1989 Mar 25;264(9):5070–5079. [PubMed] [Google Scholar]
- Cavagnero S., Zhou Z. H., Adams M. W., Chan S. I. Response of rubredoxin from Pyrococcus furiosus to environmental changes: implications for the origin of hyperthermostability. Biochemistry. 1995 Aug 8;34(31):9865–9873. doi: 10.1021/bi00031a007. [DOI] [PubMed] [Google Scholar]
- Coll M., Guasch A., Avilés F. X., Huber R. Three-dimensional structure of porcine procarboxypeptidase B: a structural basis of its inactivity. EMBO J. 1991 Jan;10(1):1–9. doi: 10.1002/j.1460-2075.1991.tb07914.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colombo S., D'Auria S., Fusi P., Zecca L., Raia C. A., Tortora P. Purification and characterization of a thermostable carboxypeptidase from the extreme thermophilic archaebacterium Sulfolobus solfataricus. Eur J Biochem. 1992 Jun 1;206(2):349–357. doi: 10.1111/j.1432-1033.1992.tb16934.x. [DOI] [PubMed] [Google Scholar]
- Doi E., Shibata D., Matoba T. Modified colorimetric ninhydrin methods for peptidase assay. Anal Biochem. 1981 Nov 15;118(1):173–184. doi: 10.1016/0003-2697(81)90175-5. [DOI] [PubMed] [Google Scholar]
- Feinberg H., Greenblatt H. M., Shoham G. Structural studies of the role of the active site metal in metalloenzymes. J Chem Inf Comput Sci. 1993 May-Jun;33(3):501–516. doi: 10.1021/ci00013a030. [DOI] [PubMed] [Google Scholar]
- Fernandez J., Andrews L., Mische S. M. An improved procedure for enzymatic digestion of polyvinylidene difluoride-bound proteins for internal sequence analysis. Anal Biochem. 1994 Apr;218(1):112–117. doi: 10.1006/abio.1994.1148. [DOI] [PubMed] [Google Scholar]
- Ghosh M., Grunden A. M., Dunn D. M., Weiss R., Adams M. W. Characterization of native and recombinant forms of an unusual cobalt-dependent proline dipeptidase (prolidase) from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol. 1998 Sep;180(18):4781–4789. doi: 10.1128/jb.180.18.4781-4789.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hardeman K., Samyn B., Van der Eycken J., Van Beeumen J. An improved chemical approach toward the C-terminal sequence analysis of proteins containing all natural amino acids. Protein Sci. 1998 Jul;7(7):1593–1602. doi: 10.1002/pro.5560070713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harwood V. J., Denson J. D., Robinson-Bidle K. A., Schreier H. J. Overexpression and characterization of a prolyl endopeptidase from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol. 1997 Jun;179(11):3613–3618. doi: 10.1128/jb.179.11.3613-3618.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hess D., Krüger K., Knappik A., Palm P., Hensel R. Dimeric 3-phosphoglycerate kinases from hyperthermophilic Archaea. Cloning, sequencing and expression of the 3-phosphoglycerate kinase gene of Pyrococcus woesei in Escherichia coli and characterization of the protein. Structural and functional comparison with the 3-phosphoglycerate kinase of Methanothermus fervidus. Eur J Biochem. 1995 Oct 1;233(1):227–237. doi: 10.1111/j.1432-1033.1995.227_1.x. [DOI] [PubMed] [Google Scholar]
- Kawarabayasi Y., Sawada M., Horikawa H., Haikawa Y., Hino Y., Yamamoto S., Sekine M., Baba S., Kosugi H., Hosoyama A. Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3. DNA Res. 1998 Apr 30;5(2):55–76. doi: 10.1093/dnares/5.2.55. [DOI] [PubMed] [Google Scholar]
- Kohlhoff M., Dahm A., Hensel R. Tetrameric triosephosphate isomerase from hyperthermophilic Archaea. FEBS Lett. 1996 Apr 1;383(3):245–250. doi: 10.1016/0014-5793(96)00249-9. [DOI] [PubMed] [Google Scholar]
- Laderman K. A., Davis B. R., Krutzsch H. C., Lewis M. S., Griko Y. V., Privalov P. L., Anfinsen C. B. The purification and characterization of an extremely thermostable alpha-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. J Biol Chem. 1993 Nov 15;268(32):24394–24401. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lee S. H., Minagawa E., Taguchi H., Matsuzawa H., Ohta T., Kaminogawa S., Yamauchi K. Purification and characterization of a thermostable carboxypeptidase (carboxypeptidase Taq) from Thermus aquaticus YT-1. Biosci Biotechnol Biochem. 1992 Nov;56(11):1839–1844. doi: 10.1271/bbb.56.1839. [DOI] [PubMed] [Google Scholar]
- Lee S. H., Taguchi H., Yoshimura E., Minagawa E., Kaminogawa S., Ohta T., Matsuzawa H. Carboxypeptidase Taq, a thermostable zinc enzyme, from Thermus aquaticus YT-1: molecular cloning, sequencing, and expression of the encoding gene in Escherichia coli. Biosci Biotechnol Biochem. 1994 Aug;58(8):1490–1495. doi: 10.1271/bbb.58.1490. [DOI] [PubMed] [Google Scholar]
- Lee S. H., Taguchi H., Yoshimura E., Minagawa E., Kaminogawa S., Ohta T., Matsuzawa H. The active site of carboxypeptidase Taq possesses the active-site motif His-Glu-X-X-His of zinc-dependent endopeptidases and aminopeptidases. Protein Eng. 1996 Jun;9(6):467–469. doi: 10.1093/protein/9.6.467. [DOI] [PubMed] [Google Scholar]
- Legrain C., Villeret V., Roovers M., Gigot D., Dideberg O., Piérard A., Glansdorff N. Biochemical characterisation of ornithine carbamoyltransferase from Pyrococcus furiosus. Eur J Biochem. 1997 Aug 1;247(3):1046–1055. doi: 10.1111/j.1432-1033.1997.01046.x. [DOI] [PubMed] [Google Scholar]
- Lundberg K. S., Shoemaker D. D., Adams M. W., Short J. M., Sorge J. A., Mathur E. J. High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene. 1991 Dec 1;108(1):1–6. doi: 10.1016/0378-1119(91)90480-y. [DOI] [PubMed] [Google Scholar]
- Macedo-Ribeiro S., Darimont B., Sterner R., Huber R. Small structural changes account for the high thermostability of 1[4Fe-4S] ferredoxin from the hyperthermophilic bacterium Thermotoga maritima. Structure. 1996 Nov 15;4(11):1291–1301. doi: 10.1016/s0969-2126(96)00137-2. [DOI] [PubMed] [Google Scholar]
- Martins L. O., Santos H. Accumulation of Mannosylglycerate and Di-myo-Inositol-Phosphate by Pyrococcus furiosus in Response to Salinity and Temperature. Appl Environ Microbiol. 1995 Sep;61(9):3299–3303. doi: 10.1128/aem.61.9.3299-3303.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pfeil W., Gesierich U., Kleemann G. R., Sterner R. Ferredoxin from the hyperthermophile Thermotoga maritima is stable beyond the boiling point of water. J Mol Biol. 1997 Oct 3;272(4):591–596. doi: 10.1006/jmbi.1997.1278. [DOI] [PubMed] [Google Scholar]
- Ramakrishnan V., Verhagen M., Adams M. Characterization of Di-myo-Inositol-1,1(prm1)-Phosphate in the Hyperthermophilic Bacterium Thermotoga maritima. Appl Environ Microbiol. 1997 Jan;63(1):347–350. doi: 10.1128/aem.63.1.347-350.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rees D. C., Lewis M., Lipscomb W. N. Refined crystal structure of carboxypeptidase A at 1.54 A resolution. J Mol Biol. 1983 Aug 5;168(2):367–387. doi: 10.1016/s0022-2836(83)80024-2. [DOI] [PubMed] [Google Scholar]
- Rowsell S., Pauptit R. A., Tucker A. D., Melton R. G., Blow D. M., Brick P. Crystal structure of carboxypeptidase G2, a bacterial enzyme with applications in cancer therapy. Structure. 1997 Mar 15;5(3):337–347. doi: 10.1016/s0969-2126(97)00191-3. [DOI] [PubMed] [Google Scholar]
- Schicho R. N., Ma K., Adams M. W., Kelly R. M. Bioenergetics of sulfur reduction in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol. 1993 Mar;175(6):1823–1830. doi: 10.1128/jb.175.6.1823-1830.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Skidgel R. A., Erdös E. G. Cellular carboxypeptidases. Immunol Rev. 1998 Feb;161:129–141. doi: 10.1111/j.1600-065x.1998.tb01577.x. [DOI] [PubMed] [Google Scholar]
- Skidgel R. A. Human carboxypeptidase N: lysine carboxypeptidase. Methods Enzymol. 1995;248:653–663. doi: 10.1016/0076-6879(95)48042-0. [DOI] [PubMed] [Google Scholar]
- Snowden L. J., Blumentals I. I., Kelly R. M. Regulation of Proteolytic Activity in the Hyperthermophile Pyrococcus furiosus. Appl Environ Microbiol. 1992 Apr;58(4):1134–1141. doi: 10.1128/aem.58.4.1134-1141.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steiner D. F. The proprotein convertases. Curr Opin Chem Biol. 1998 Feb;2(1):31–39. doi: 10.1016/s1367-5931(98)80033-1. [DOI] [PubMed] [Google Scholar]
- Stepanov V. M. Carboxypeptidase T. Methods Enzymol. 1995;248:675–683. doi: 10.1016/0076-6879(95)48044-7. [DOI] [PubMed] [Google Scholar]
- Sterner R., Kleemann G. R., Szadkowski H., Lustig A., Hennig M., Kirschner K. Phosphoribosyl anthranilate isomerase from Thermotoga maritima is an extremely stable and active homodimer. Protein Sci. 1996 Oct;5(10):2000–2008. doi: 10.1002/pro.5560051006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thiede B., Salnikow J., Wittmann-Liebold B. C-terminal ladder sequencing by an approach combining chemical degradation with analysis by matrix-assisted-laser-desorption ionization mass spectrometry. Eur J Biochem. 1997 Mar 15;244(3):750–754. doi: 10.1111/j.1432-1033.1997.00750.x. [DOI] [PubMed] [Google Scholar]
- Voorhorst W. G., Eggen R. I., Geerling A. C., Platteeuw C., Siezen R. J., Vos W. M. Isolation and characterization of the hyperthermostable serine protease, pyrolysin, and its gene from the hyperthermophilic archaeon Pyrococcus furiosus. J Biol Chem. 1996 Aug 23;271(34):20426–20431. doi: 10.1074/jbc.271.34.20426. [DOI] [PubMed] [Google Scholar]
- Woese C. R., Kandler O., Wheelis M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4576–4579. doi: 10.1073/pnas.87.12.4576. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zheng W., Johnston S. A., Joshua-Tor L. The unusual active site of Gal6/bleomycin hydrolase can act as a carboxypeptidase, aminopeptidase, and peptide ligase. Cell. 1998 Apr 3;93(1):103–109. doi: 10.1016/s0092-8674(00)81150-2. [DOI] [PubMed] [Google Scholar]