Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Nov;8(11):2347–2354. doi: 10.1110/ps.8.11.2347

Arginine 197 of the cholecystokinin-A receptor binding site interacts with the sulfate of the peptide agonist cholecystokinin.

V Gigoux 1, B Maigret 1, C Escrieut 1, S Silvente-Poirot 1, M Bouisson 1, J A Fehrentz 1, L Moroder 1, D Gully 1, J Martinez 1, N Vaysse 1, A D Fourmy 1
PMCID: PMC2144185  PMID: 10595537

Abstract

The knowledge of the binding sites of G protein-coupled cholecystokinin receptors represents important insights that may serve to understand their activation processes and to design or optimize ligands. Our aim was to identify the amino acid of the cholecystokinin-A receptor (CCK-AR) binding site in an interaction with the sulfate of CCK, which is crucial for CCK binding and activity. A three-dimensional model of the [CCK-AR-CCK] complex was built. In this model, Arg197 was the best candidate residue for a ionic interaction with the sulfate of CCK. Arg197 was exchanged for a methionine by site-directed mutagenesis. Wild-type and mutated CCK-AR were transiently expressed in COS-7 cells for pharmacological and functional analysis. The mutated receptor on Arg197 did not bind the agonist radioligand 125I-BH-[Thr, Nle]-CCK-9; however, it bound the nonpeptide antagonist [3H]-SR27,897 as the wild-type receptor. The mutant was approximately 1,470- and 3,200-fold less potent than the wild-type CCK-AR to activate G proteins and to induce inositol phosphate production, respectively. This is consistent with the 500-fold lower potency and 800-fold lower affinity of nonsulfated CCK relative to sulfated CCK on the wild-type receptor. These data, together with those showing that the mutated receptor failed to discriminate nonsulfated and sulfated CCK while it retained other pharmacological features of the CCK-AR, strongly support an interaction between Arg197 of the CCK-AR binding site and the sulfate of CCK. In addition, the mutated CCK-AR resembled the low affinity state of the wild-type CCK-AR, suggesting that Arg197-sulfate interaction regulates conformational changes of the CCK-AR that are required for its physiological activation.

Full Text

The Full Text of this article is available as a PDF (636.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrachina M. D., Martínez V., Wang L., Wei J. Y., Taché Y. Synergistic interaction between leptin and cholecystokinin to reduce short-term food intake in lean mice. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10455–10460. doi: 10.1073/pnas.94.19.10455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Clerc P., Dufresne M., Saillan C., Chastre E., André T., Escrieut C., Kennedy K., Vaysse N., Gespach C., Fourmy D. Differential expression of the CCK-A and CCK-B/gastrin receptor genes in human cancers of the esophagus, stomach and colon. Int J Cancer. 1997 Sep 17;72(6):931–936. doi: 10.1002/(sici)1097-0215(19970917)72:6<931::aid-ijc2>3.0.co;2-q. [DOI] [PubMed] [Google Scholar]
  3. Fourmy D., Lopez P., Poirot S., Jimenez J., Dufresne M., Moroder L., Powers S. P., Vaysse N. A new probe for affinity labelling pancreatic cholecystokinin receptor with minor modification of its structure. Eur J Biochem. 1989 Nov 6;185(2):397–403. doi: 10.1111/j.1432-1033.1989.tb15128.x. [DOI] [PubMed] [Google Scholar]
  4. Fölsch U. R. Regulation of pancreatic growth. Clin Gastroenterol. 1984 Sep;13(3):679–699. [PubMed] [Google Scholar]
  5. Gigoux V., Escrieut C., Silvente-Poirot S., Maigret B., Gouilleux L., Fehrentz J. A., Gully D., Moroder L., Vaysse N., Fourmy D. Met-195 of the cholecystokinin-A receptor interacts with the sulfated tyrosine of cholecystokinin and is crucial for receptor transition to high affinity state. J Biol Chem. 1998 Jun 5;273(23):14380–14386. doi: 10.1074/jbc.273.23.14380. [DOI] [PubMed] [Google Scholar]
  6. Gully D., Fréhel D., Marcy C., Spinazzé A., Lespy L., Neliat G., Maffrand J. P., Le Fur G. Peripheral biological activity of SR 27897: a new potent non-peptide antagonist of CCKA receptors. Eur J Pharmacol. 1993 Feb 23;232(1):13–19. doi: 10.1016/0014-2999(93)90722-t. [DOI] [PubMed] [Google Scholar]
  7. Henderson R., Baldwin J. M., Ceska T. A., Zemlin F., Beckmann E., Downing K. H. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol. 1990 Jun 20;213(4):899–929. doi: 10.1016/S0022-2836(05)80271-2. [DOI] [PubMed] [Google Scholar]
  8. Horn F., Weare J., Beukers M. W., Hörsch S., Bairoch A., Chen W., Edvardsen O., Campagne F., Vriend G. GPCRDB: an information system for G protein-coupled receptors. Nucleic Acids Res. 1998 Jan 1;26(1):275–279. doi: 10.1093/nar/26.1.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Huang S. C., Fortune K. P., Wank S. A., Kopin A. S., Gardner J. D. Multiple affinity states of different cholecystokinin receptors. J Biol Chem. 1994 Oct 21;269(42):26121–26126. [PubMed] [Google Scholar]
  10. Innis R. B., Snyder S. H. Distinct cholecystokinin receptors in brain and pancreas. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6917–6921. doi: 10.1073/pnas.77.11.6917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jensen R. T., Lemp G. F., Gardner J. D. Interactions of COOH-terminal fragments of cholecystokinin with receptors on dispersed acini from guinea pig pancreas. J Biol Chem. 1982 May 25;257(10):5554–5559. [PubMed] [Google Scholar]
  12. Ji Z., Hadac E. M., Henne R. M., Patel S. A., Lybrand T. P., Miller L. J. Direct identification of a distinct site of interaction between the carboxyl-terminal residue of cholecystokinin and the type A cholecystokinin receptor using photoaffinity labeling. J Biol Chem. 1997 Sep 26;272(39):24393–24401. doi: 10.1074/jbc.272.39.24393. [DOI] [PubMed] [Google Scholar]
  13. Kenakin T. Pharmacological proteus? Trends Pharmacol Sci. 1995 Aug;16(8):256–258. doi: 10.1016/s0165-6147(00)89037-9. [DOI] [PubMed] [Google Scholar]
  14. Kennedy K., Gigoux V., Escrieut C., Maigret B., Martinez J., Moroder L., Fréhel D., Gully D., Vaysse N., Fourmy D. Identification of two amino acids of the human cholecystokinin-A receptor that interact with the N-terminal moiety of cholecystokinin. J Biol Chem. 1997 Jan 31;272(5):2920–2926. doi: 10.1074/jbc.272.5.2920. [DOI] [PubMed] [Google Scholar]
  15. Lefkowitz R. J., Cotecchia S., Samama P., Costa T. Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. Trends Pharmacol Sci. 1993 Aug;14(8):303–307. doi: 10.1016/0165-6147(93)90048-O. [DOI] [PubMed] [Google Scholar]
  16. Mutt V., Jorpes E. Hormonal polypeptides of the upper intestine. Biochem J. 1971 Dec;125(3):57P–58P. doi: 10.1042/bj1250057p. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rehfeld J. F., van Solinge W. W. The tumor biology of gastrin and cholecystokinin. Adv Cancer Res. 1994;63:295–347. doi: 10.1016/s0065-230x(08)60403-0. [DOI] [PubMed] [Google Scholar]
  18. Schwartz T. W., Rosenkilde M. M. Is there a 'lock' for all agonist 'keys' in 7TM receptors? Trends Pharmacol Sci. 1996 Jun;17(6):213–216. doi: 10.1016/0165-6147(96)10017-1. [DOI] [PubMed] [Google Scholar]
  19. Silvente-Poirot S., Dufresne M., Vaysse N., Fourmy D. The peripheral cholecystokinin receptors. Eur J Biochem. 1993 Aug 1;215(3):513–529. doi: 10.1111/j.1432-1033.1993.tb18061.x. [DOI] [PubMed] [Google Scholar]
  20. Silvente-Poirot S., Escrieut C., Galès C., Fehrentz J. A., Escherich A., Wank S. A., Martinez J., Moroder L., Maigret B., Bouisson M. Evidence for a direct interaction between the penultimate aspartic acid of cholecystokinin and histidine 207, located in the second extracellular loop of the cholecystokinin B receptor. J Biol Chem. 1999 Aug 13;274(33):23191–23197. doi: 10.1074/jbc.274.33.23191. [DOI] [PubMed] [Google Scholar]
  21. Silvente-Poirot S., Escrieut C., Wank S. A. Role of the extracellular domains of the cholecystokinin receptor in agonist binding. Mol Pharmacol. 1998 Aug;54(2):364–371. doi: 10.1124/mol.54.2.364. [DOI] [PubMed] [Google Scholar]
  22. Silvente-Poirot S., Wank S. A. A segment of five amino acids in the second extracellular loop of the cholecystokinin-B receptor is essential for selectivity of the peptide agonist gastrin. J Biol Chem. 1996 Jun 21;271(25):14698–14706. doi: 10.1074/jbc.271.25.14698. [DOI] [PubMed] [Google Scholar]
  23. Steigerwalt R. W., Williams J. A. Characterization of cholecystokinin receptors on rat pancreatic membranes. Endocrinology. 1981 Nov;109(5):1746–1753. doi: 10.1210/endo-109-5-1746. [DOI] [PubMed] [Google Scholar]
  24. Strader C. D., Fong T. M., Graziano M. P., Tota M. R. The family of G-protein-coupled receptors. FASEB J. 1995 Jun;9(9):745–754. [PubMed] [Google Scholar]
  25. Talkad V. D., Fortune K. P., Pollo D. A., Shah G. N., Wank S. A., Gardner J. D. Direct demonstration of three different states of the pancreatic cholecystokinin receptor. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1868–1872. doi: 10.1073/pnas.91.5.1868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ulrich C. D., Ferber I., Holicky E., Hadac E., Buell G., Miller L. J. Molecular cloning and functional expression of the human gallbladder cholecystokinin A receptor. Biochem Biophys Res Commun. 1993 May 28;193(1):204–211. doi: 10.1006/bbrc.1993.1610. [DOI] [PubMed] [Google Scholar]
  27. Unger V. M., Hargrave P. A., Baldwin J. M., Schertler G. F. Arrangement of rhodopsin transmembrane alpha-helices. Nature. 1997 Sep 11;389(6647):203–206. doi: 10.1038/38316. [DOI] [PubMed] [Google Scholar]
  28. Wank S. A. G protein-coupled receptors in gastrointestinal physiology. I. CCK receptors: an exemplary family. Am J Physiol. 1998 Apr;274(4 Pt 1):G607–G613. doi: 10.1152/ajpgi.1998.274.4.g607. [DOI] [PubMed] [Google Scholar]
  29. Weinberg D. S., Ruggeri B., Barber M. T., Biswas S., Miknyocki S., Waldman S. A. Cholecystokinin A and B receptors are differentially expressed in normal pancreas and pancreatic adenocarcinoma. J Clin Invest. 1997 Aug 1;100(3):597–603. doi: 10.1172/JCI119570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Williams J. A., Blevins G. T., Jr Cholecystokinin and regulation of pancreatic acinar cell function. Physiol Rev. 1993 Oct;73(4):701–723. doi: 10.1152/physrev.1993.73.4.701. [DOI] [PubMed] [Google Scholar]
  31. de Weerth A., Pisegna J. R., Huppi K., Wank S. A. Molecular cloning, functional expression and chromosomal localization of the human cholecystokinin type A receptor. Biochem Biophys Res Commun. 1993 Jul 30;194(2):811–818. doi: 10.1006/bbrc.1993.1894. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES