Abstract
Lumazine synthase catalyzes the penultimate step in the synthesis of riboflavin in plants, fungi, and microorganisms. The enzyme displays two quaternary structures, the pentameric forms in yeast and fungi and the 60-meric icosahedral capsids in plants and bacteria. To elucidate the structural features that might be responsible for differences in assembly, we have determined the crystal structures of lumazine synthase, complexed with the inhibitor 5-nitroso-6-ribitylamino-2,4-pyrimidinedione, from spinach and the fungus Magnaporthe grisea to 3.3 and 3.1 A resolution, respectively. The overall structure of the subunit and the mode of inhibitor binding are very similar in these enzyme species. The core of the subunit consists of a four-stranded parallel beta-sheet sandwiched between two helices on one side and three helices on the other. The packing of the five subunits in the pentameric M. grisea lumazine synthase is very similar to the packing in the pentameric substructures in the icosahedral capsid of the plant enzyme. Two structural features can be correlated to the differences in assembly. In the plant enzyme, the N-terminal beta-strand interacts with the beta-sheet of the adjacent subunit, thus extending the sheet from four to five strands. In fungal lumazine synthase, an insertion of two residues after strand beta1 results in a completely different orientation of this part of the polypeptide chain and this conformational difference prevents proper packing of the subunits at the trimer interface in the icosahedron. In the spinach enzyme, the beta-hairpin connecting helices alpha4 and alpha5 participates in the packing at the trimer interface of the icosahedron. Another insertion of two residues at this position of the polypeptide chain in the fungal enzyme disrupts the hydrogen bonding in the hairpin, and the resulting change in conformation of this loop also interferes with proper intrasubunit contacts at the trimer interface.
Full Text
The Full Text of this article is available as a PDF (3.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bacher A., Baur R., Eggers U., Harders H. D., Otto M. K., Schnepple H. Riboflavin synthases of Bacillus subtilis. Purification and properties. J Biol Chem. 1980 Jan 25;255(2):632–637. [PubMed] [Google Scholar]
- Bacher A., Eberhardt S., Fischer M., Mörtl S., Kis K., Kugelbrey K., Scheuring J., Schott K. Biosynthesis of riboflavin: lumazine synthase and riboflavin synthase. Methods Enzymol. 1997;280:389–399. doi: 10.1016/s0076-6879(97)80130-9. [DOI] [PubMed] [Google Scholar]
- Bacher A., Fischer M., Kis K., Kugelbrey K., Mörtl S., Scheuring J., Weinkauf S., Eberhardt S., Schmidt-Bäse K., Huber R. Biosynthesis of riboflavin: structure and mechanism of lumazine synthase. Biochem Soc Trans. 1996 Feb;24(1):89–94. doi: 10.1042/bst0240089. [DOI] [PubMed] [Google Scholar]
- Brünger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M., Pannu N. S. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905–921. doi: 10.1107/s0907444998003254. [DOI] [PubMed] [Google Scholar]
- Brünger A. T., Krukowski A., Erickson J. W. Slow-cooling protocols for crystallographic refinement by simulated annealing. Acta Crystallogr A. 1990 Jul 1;46(Pt 7):585–593. doi: 10.1107/s0108767390002355. [DOI] [PubMed] [Google Scholar]
- García-Ramírez J. J., Santos M. A., Revuelta J. L. The Saccharomyces cerevisiae RIB4 gene codes for 6,7-dimethyl-8-ribityllumazine synthase involved in riboflavin biosynthesis. Molecular characterization of the gene and purification of the encoded protein. J Biol Chem. 1995 Oct 6;270(40):23801–23807. doi: 10.1074/jbc.270.40.23801. [DOI] [PubMed] [Google Scholar]
- Goldbaum F. A., Polikarpov I., Cauerhff A. A., Velikovsky C. A., Braden B. C., Poljak R. J. Crystallization and preliminary x-ray diffraction analysis of the lumazine synthase from Brucella abortus. J Struct Biol. 1998 Oct;123(2):175–178. doi: 10.1006/jsbi.1998.4022. [DOI] [PubMed] [Google Scholar]
- Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
- Kis K., Bacher A. Substrate channeling in the lumazine synthase/riboflavin synthase complex of Bacillus subtilis. J Biol Chem. 1995 Jul 14;270(28):16788–16795. doi: 10.1074/jbc.270.28.16788. [DOI] [PubMed] [Google Scholar]
- Kis K., Volk R., Bacher A. Biosynthesis of riboflavin. Studies on the reaction mechanism of 6,7-dimethyl-8-ribityllumazine synthase. Biochemistry. 1995 Mar 7;34(9):2883–2892. doi: 10.1021/bi00009a019. [DOI] [PubMed] [Google Scholar]
- Ladenstein R., Ritsert K., Huber R., Richter G., Bacher A. The lumazine synthase/riboflavin synthase complex of Bacillus subtilis. X-ray structure analysis of hollow reconstituted beta-subunit capsids. Eur J Biochem. 1994 Aug 1;223(3):1007–1017. doi: 10.1111/j.1432-1033.1994.tb19079.x. [DOI] [PubMed] [Google Scholar]
- Ladenstein R., Schneider M., Huber R., Bartunik H. D., Wilson K., Schott K., Bacher A. Heavy riboflavin synthase from Bacillus subtilis. Crystal structure analysis of the icosahedral beta 60 capsid at 3.3 A resolution. J Mol Biol. 1988 Oct 20;203(4):1045–1070. doi: 10.1016/0022-2836(88)90128-3. [DOI] [PubMed] [Google Scholar]
- Matthews B. W. Solvent content of protein crystals. J Mol Biol. 1968 Apr 28;33(2):491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
- Merritt E. A., Murphy M. E. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr D Biol Crystallogr. 1994 Nov 1;50(Pt 6):869–873. doi: 10.1107/S0907444994006396. [DOI] [PubMed] [Google Scholar]
- Mörtl S., Fischer M., Richter G., Tack J., Weinkauf S., Bacher A. Biosynthesis of riboflavin. Lumazine synthase of Escherichia coli. J Biol Chem. 1996 Dec 27;271(52):33201–33207. doi: 10.1074/jbc.271.52.33201. [DOI] [PubMed] [Google Scholar]
- Plaut G. W., Beach R. L., Aogaichi T. Studies on the mechanism of elimination of protons from the methyl groups of 6,7-dimethyl-8-ribityllumazine by riboflavin synthetase. Biochemistry. 1970 Feb 17;9(4):771–785. doi: 10.1021/bi00806a010. [DOI] [PubMed] [Google Scholar]
- Ritsert K., Huber R., Turk D., Ladenstein R., Schmidt-Bäse K., Bacher A. Studies on the lumazine synthase/riboflavin synthase complex of Bacillus subtilis: crystal structure analysis of reconstituted, icosahedral beta-subunit capsids with bound substrate analogue inhibitor at 2.4 A resolution. J Mol Biol. 1995 Oct 13;253(1):151–167. doi: 10.1006/jmbi.1995.0542. [DOI] [PubMed] [Google Scholar]