Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Nov;8(11):2455–2459. doi: 10.1110/ps.8.11.2455

Thermodynamics of replacing an alpha-helical Pro residue in the P40S mutant of Escherichia coli thioredoxin.

A Chakrabarti 1, S Srivastava 1, C P Swaminathan 1, A Surolia 1, R Varadarajan 1
PMCID: PMC2144191  PMID: 10595549

Abstract

Escherichia coli thioredoxin is a 108 amino acid oxidoreductase and contains a single Met residue at position 37. The protein contains a long alpha-helical stretch between residues 32 and 49. The central residue of this helix, Pro40, has been replaced by Ser. The stabilities of the oxidized states of two proteins, the single mutant M37L and the double mutant M37L,P40S, have been characterized by differential scanning calorimetry (DSC) and also by a series of isothermal guanidine hydrochloride (GuHCl) melts in the temperature range of 277 to 333 K. The P40S mutation was found to stabilize the protein at all temperatures upto 340 K though both proteins had similar Tm values of about 356 K. At 298 K, the M37L,P40S mutant was found to be more stable than M37L by 1.5 kcal/mol. A combined analysis of GuHCl and calorimetric data was carried out to determine the enthalpy, entropy, and heat capacity change upon unfolding. At 298 K there was a large, stabilizing enthalpic effect in P40S though significant enthalpy-entropy compensation was observed and the two proteins had similar values of deltaCp. Thus, replacement of a Pro in the interior of an alpha helix can have substantial effects on protein stability.

Full Text

The Full Text of this article is available as a PDF (128.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alber T., Bell J. A., Sun D. P., Nicholson H., Wozniak J. A., Cook S., Matthews B. W. Replacements of Pro86 in phage T4 lysozyme extend an alpha-helix but do not alter protein stability. Science. 1988 Feb 5;239(4840):631–635. doi: 10.1126/science.3277275. [DOI] [PubMed] [Google Scholar]
  2. Blaber M., Zhang X. J., Matthews B. W. Structural basis of amino acid alpha helix propensity. Science. 1993 Jun 11;260(5114):1637–1640. doi: 10.1126/science.8503008. [DOI] [PubMed] [Google Scholar]
  3. Chakrabarti P., Chakrabarti S. C--H...O hydrogen bond involving proline residues in alpha-helices. J Mol Biol. 1998 Dec 11;284(4):867–873. doi: 10.1006/jmbi.1998.2199. [DOI] [PubMed] [Google Scholar]
  4. Eklund H., Gleason F. K., Holmgren A. Structural and functional relations among thioredoxins of different species. Proteins. 1991;11(1):13–28. doi: 10.1002/prot.340110103. [DOI] [PubMed] [Google Scholar]
  5. Ghoshal A. K., Swaminathan C. P., Thomas C. J., Surolia A., Varadarajan R. Thermodynamic and kinetic analysis of the Escherichia coli thioredoxin-C' fragment complementation system. Biochem J. 1999 May 1;339(Pt 3):721–727. [PMC free article] [PubMed] [Google Scholar]
  6. Gray T. M., Arnoys E. J., Blankespoor S., Born T., Jagar R., Everman R., Plowman D., Stair A., Zhang D. Destabilizing effect of proline substitutions in two helical regions of T4 lysozyme: leucine 66 to proline and leucine 91 to proline. Protein Sci. 1996 Apr;5(4):742–751. doi: 10.1002/pro.5560050419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gunasekaran K., Nagarajaram H. A., Ramakrishnan C., Balaram P. Stereochemical punctuation marks in protein structures: glycine and proline containing helix stop signals. J Mol Biol. 1998 Feb 6;275(5):917–932. doi: 10.1006/jmbi.1997.1505. [DOI] [PubMed] [Google Scholar]
  8. Hellinga H. W., Wynn R., Richards F. M. The hydrophobic core of Escherichia coli thioredoxin shows a high tolerance to nonconservative single amino acid substitutions. Biochemistry. 1992 Nov 17;31(45):11203–11209. doi: 10.1021/bi00160a034. [DOI] [PubMed] [Google Scholar]
  9. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
  10. Katti S. K., LeMaster D. M., Eklund H. Crystal structure of thioredoxin from Escherichia coli at 1.68 A resolution. J Mol Biol. 1990 Mar 5;212(1):167–184. doi: 10.1016/0022-2836(90)90313-B. [DOI] [PubMed] [Google Scholar]
  11. Kelley R. F., Stellwagen E. Conformational transitions of thioredoxin in guanidine hydrochloride. Biochemistry. 1984 Oct 23;23(22):5095–5102. doi: 10.1021/bi00317a003. [DOI] [PubMed] [Google Scholar]
  12. Ladbury J. E., Wynn R., Hellinga H. W., Sturtevant J. M. Stability of oxidized Escherichia coli thioredoxin and its dependence on protonation of the aspartic acid residue in the 26 position. Biochemistry. 1993 Jul 27;32(29):7526–7530. doi: 10.1021/bi00080a026. [DOI] [PubMed] [Google Scholar]
  13. MacArthur M. W., Thornton J. M. Influence of proline residues on protein conformation. J Mol Biol. 1991 Mar 20;218(2):397–412. doi: 10.1016/0022-2836(91)90721-h. [DOI] [PubMed] [Google Scholar]
  14. O'Neil K. T., DeGrado W. F. A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science. 1990 Nov 2;250(4981):646–651. doi: 10.1126/science.2237415. [DOI] [PubMed] [Google Scholar]
  15. Pace C. N., Laurents D. V. A new method for determining the heat capacity change for protein folding. Biochemistry. 1989 Mar 21;28(6):2520–2525. doi: 10.1021/bi00432a026. [DOI] [PubMed] [Google Scholar]
  16. RAMACHANDRAN G. N., RAMAKRISHNAN C., SASISEKHARAN V. Stereochemistry of polypeptide chain configurations. J Mol Biol. 1963 Jul;7:95–99. doi: 10.1016/s0022-2836(63)80023-6. [DOI] [PubMed] [Google Scholar]
  17. Reidhaar-Olson J. F., Parsell D. A., Sauer R. T. An essential proline in lambda repressor is required for resistance to intracellular proteolysis. Biochemistry. 1990 Aug 21;29(33):7563–7571. doi: 10.1021/bi00485a004. [DOI] [PubMed] [Google Scholar]
  18. Richards F. M., Lim W. A. An analysis of packing in the protein folding problem. Q Rev Biophys. 1993 Nov;26(4):423–498. doi: 10.1017/s0033583500002845. [DOI] [PubMed] [Google Scholar]
  19. Rose G. D., Geselowitz A. R., Lesser G. J., Lee R. H., Zehfus M. H. Hydrophobicity of amino acid residues in globular proteins. Science. 1985 Aug 30;229(4716):834–838. doi: 10.1126/science.4023714. [DOI] [PubMed] [Google Scholar]
  20. Santoro M. M., Bolen D. W. A test of the linear extrapolation of unfolding free energy changes over an extended denaturant concentration range. Biochemistry. 1992 May 26;31(20):4901–4907. doi: 10.1021/bi00135a022. [DOI] [PubMed] [Google Scholar]
  21. Sauer U. H., San D. P., Matthews B. W. Tolerance of T4 lysozyme to proline substitutions within the long interdomain alpha-helix illustrates the adaptability of proteins to potentially destabilizing lesions. J Biol Chem. 1992 Feb 5;267(4):2393–2399. [PubMed] [Google Scholar]
  22. Schellman J. A. The thermodynamic stability of proteins. Annu Rev Biophys Biophys Chem. 1987;16:115–137. doi: 10.1146/annurev.bb.16.060187.000555. [DOI] [PubMed] [Google Scholar]
  23. Sheshadri S., Lingaraju G. M., Varadarajan R. Denaturant mediated unfolding of both native and molten globule states of maltose binding protein are accompanied by large deltaCp's. Protein Sci. 1999 Aug;8(8):1689–1695. doi: 10.1110/ps.8.8.1689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Strehlow K. G., Robertson A. D., Baldwin R. L. Proline for alanine substitutions in the C-peptide helix of ribonuclease A. Biochemistry. 1991 Jun 11;30(23):5810–5814. doi: 10.1021/bi00237a026. [DOI] [PubMed] [Google Scholar]
  25. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  26. Wilson J., Kelley R. F., Shalongo W., Lowery D., Stellwagen E. Equilibrium and kinetic measurements of the conformational transition of thioredoxin in urea. Biochemistry. 1986 Nov 18;25(23):7560–7566. doi: 10.1021/bi00371a045. [DOI] [PubMed] [Google Scholar]
  27. Woolfson D. N., Williams D. H. The influence of proline residues on alpha-helical structure. FEBS Lett. 1990 Dec 17;277(1-2):185–188. doi: 10.1016/0014-5793(90)80839-b. [DOI] [PubMed] [Google Scholar]
  28. Yuan H. S., Wang S. S., Yang W. Z., Finkel S. E., Johnson R. C. The structure of Fis mutant Pro61Ala illustrates that the kink within the long alpha-helix is not due to the presence of the proline residue. J Biol Chem. 1994 Nov 18;269(46):28947–28954. doi: 10.2210/pdb1fip/pdb. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES