Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Nov;8(11):2406–2417. doi: 10.1110/ps.8.11.2406

Crystal structure of Trypanosoma cruzi tyrosine aminotransferase: substrate specificity is influenced by cofactor binding mode.

W Blankenfeldt 1, C Nowicki 1, M Montemartini-Kalisz 1, H M Kalisz 1, H J Hecht 1
PMCID: PMC2144194  PMID: 10595543

Abstract

The crystal structure of tyrosine aminotransferase (TAT) from the parasitic protozoan Trypanosoma cruzi, which belongs to the aminotransferase subfamily Igamma, has been determined at 2.5 A resolution with the R-value R = 15.1%. T. cruzi TAT shares less than 15% sequence identity with aminotransferases of subfamily Ialpha but shows only two larger topological differences to the aspartate aminotransferases (AspATs). First, TAT contains a loop protruding from the enzyme surface in the larger cofactor-binding domain, where the AspATs have a kinked alpha-helix. Second, in the smaller substrate-binding domain, TAT has a four-stranded antiparallel beta-sheet instead of the two-stranded beta-sheet in the AspATs. The position of the aromatic ring of the pyridoxal-5'-phosphate cofactor is very similar to the AspATs but the phosphate group, in contrast, is closer to the substrate-binding site with one of its oxygen atoms pointing toward the substrate. Differences in substrate specificities of T. cruzi TAT and subfamily Ialpha aminotransferases can be attributed by modeling of substrate complexes mainly to this different position of the cofactor-phosphate group. Absence of the arginine, which in the AspATs fixes the substrate side-chain carboxylate group by a salt bridge, contributes to the inability of T. cruzi TAT to transaminate acidic amino acids. The preference of TAT for tyrosine is probably related to the ability of Asn17 in TAT to form a hydrogen bond to the tyrosine side-chain hydroxyl group.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander F. W., Sandmeier E., Mehta P. K., Christen P. Evolutionary relationships among pyridoxal-5'-phosphate-dependent enzymes. Regio-specific alpha, beta and gamma families. Eur J Biochem. 1994 Feb 1;219(3):953–960. doi: 10.1111/j.1432-1033.1994.tb18577.x. [DOI] [PubMed] [Google Scholar]
  2. Andersson S. M., Pispa J. P. Purification and properties of human liver tyrosine aminotransferase. Clin Chim Acta. 1982 Oct 27;125(2):117–123. doi: 10.1016/0009-8981(82)90188-7. [DOI] [PubMed] [Google Scholar]
  3. Berger B. J., Dai W. W., Wang H., Stark R. E., Cerami A. Aromatic amino acid transamination and methionine recycling in trypanosomatids. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4126–4130. doi: 10.1073/pnas.93.9.4126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berger B. J., Dai W. W., Wilson J. Methionine formation from alpha-ketomethiobutyrate in the trypanosomatid Crithidia fasciculata. FEMS Microbiol Lett. 1998 Aug 15;165(2):305–312. doi: 10.1111/j.1574-6968.1998.tb13162.x. [DOI] [PubMed] [Google Scholar]
  5. Bontempi E. J., Búa J., Aslund L., Porcel B., Segura E. L., Henriksson J., Orn A., Pettersson U., Ruiz A. M. Isolation and characterization of a gene from Trypanosoma cruzi encoding a 46-kilodalton protein with homology to human and rat tyrosine aminotransferase. Mol Biochem Parasitol. 1993 Jun;59(2):253–262. doi: 10.1016/0166-6851(93)90223-k. [DOI] [PubMed] [Google Scholar]
  6. Brünger A. T., Krukowski A., Erickson J. W. Slow-cooling protocols for crystallographic refinement by simulated annealing. Acta Crystallogr A. 1990 Jul 1;46(Pt 7):585–593. doi: 10.1107/s0108767390002355. [DOI] [PubMed] [Google Scholar]
  7. CHATTERJEE A. N., GHOSH J. J. Transaminases of Leishmania donovani, the causative organism of kala-azar. Nature. 1957 Dec 21;180(4599):1425–1425. doi: 10.1038/1801425a0. [DOI] [PubMed] [Google Scholar]
  8. Cazzulo J. J. Energy metabolism in Trypanosoma cruzi. Subcell Biochem. 1992;18:235–257. doi: 10.1007/978-1-4899-1651-8_7. [DOI] [PubMed] [Google Scholar]
  9. Cazzulo J. J., Franke de Cazzulo B. M., Engel J. C., Cannata J. J. End products and enzyme levels of aerobic glucose fermentation in trypanosomatids. Mol Biochem Parasitol. 1985 Sep;16(3):329–343. doi: 10.1016/0166-6851(85)90074-x. [DOI] [PubMed] [Google Scholar]
  10. Constantsas N. S., Levis G. M., Vakirtzi-Lemonias C. S. Crithidia fasciculata tyrosine transaminase. I. Development, characterization and differentiation from alanine transaminase. Biochim Biophys Acta. 1971 Jan 26;230(1):137–145. [PubMed] [Google Scholar]
  11. Cruickshank D. W. Remarks about protein structure precision. Acta Crystallogr D Biol Crystallogr. 1999 Mar;55(Pt 3):583–601. doi: 10.1107/s0907444998012645. [DOI] [PubMed] [Google Scholar]
  12. Dietrich J. B., Lorber B., Kern D. Expression of mammalian tyrosine aminotransferase in Saccharomyces cerevisiae and Escherichia coli. Purification to homogeneity and characterization of the enzyme overproduced in the bacteria. Eur J Biochem. 1991 Oct 15;201(2):399–407. doi: 10.1111/j.1432-1033.1991.tb16297.x. [DOI] [PubMed] [Google Scholar]
  13. El Sawalhy A., Seed J. R., Hall J. E., El Attar H. Increased excretion of aromatic amino acid catabolites in animals infected with Trypanosoma brucei evansi. J Parasitol. 1998 Jun;84(3):469–473. [PubMed] [Google Scholar]
  14. Esnouf R. M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J Mol Graph Model. 1997 Apr;15(2):132-4, 112-3. doi: 10.1016/S1093-3263(97)00021-1. [DOI] [PubMed] [Google Scholar]
  15. Fair D. S., Krassner S. M. Alanine aminotransferase and aspartate aminotransferase in Leishmania tarentolae. J Protozool. 1971 Aug;18(3):441–444. doi: 10.1111/j.1550-7408.1971.tb03352.x. [DOI] [PubMed] [Google Scholar]
  16. Fellman J. H., Vanbellinghen P. J., Jones R. T., Koler R. D. Soluble and mitochondrial forms of tyrosine aminotransferase. Relationship to human tyrosinemia. Biochemistry. 1969 Feb;8(2):615–622. doi: 10.1021/bi00830a023. [DOI] [PubMed] [Google Scholar]
  17. Flohé L. The Achilles' heel of trypanosomatids: trypanothione-mediated hydroperoxide metabolism. Biofactors. 1998;8(1-2):87–91. doi: 10.1002/biof.5520080115. [DOI] [PubMed] [Google Scholar]
  18. Ford G. C., Eichele G., Jansonius J. N. Three-dimensional structure of a pyridoxal-phosphate-dependent enzyme, mitochondrial aspartate aminotransferase. Proc Natl Acad Sci U S A. 1980 May;77(5):2559–2563. doi: 10.1073/pnas.77.5.2559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gouet P., Courcelle E., Stuart D. I., Métoz F. ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics. 1999 Apr;15(4):305–308. doi: 10.1093/bioinformatics/15.4.305. [DOI] [PubMed] [Google Scholar]
  20. Grange T., Guénet C., Dietrich J. B., Chasserot S., Fromont M., Befort N., Jami J., Beck G., Pictet R. Complete complementary DNA of rat tyrosine aminotransferase messenger RNA. Deduction of the primary structure of the enzyme. J Mol Biol. 1985 Jul 20;184(2):347–350. doi: 10.1016/0022-2836(85)90386-9. [DOI] [PubMed] [Google Scholar]
  21. Hargrove J. L. Persulfide generated from L-cysteine inactivates tyrosine aminotransferase. Requirement for a protein with cysteine oxidase activity and gamma-cystathionase. J Biol Chem. 1988 Nov 25;263(33):17262–17269. [PubMed] [Google Scholar]
  22. Hargrove J. L., Wichman R. D. A cystine-dependent inactivator of tyrosine aminotransferase co-purifies with gamma-cystathionase (cystine desulfurase). J Biol Chem. 1987 May 25;262(15):7351–7357. [PubMed] [Google Scholar]
  23. Hayashi H., Mizuguchi H., Kagamiyama H. The imine-pyridine torsion of the pyridoxal 5'-phosphate Schiff base of aspartate aminotransferase lowers its pKa in the unliganded enzyme and is crucial for the successive increase in the pKa during catalysis. Biochemistry. 1998 Oct 27;37(43):15076–15085. doi: 10.1021/bi981517e. [DOI] [PubMed] [Google Scholar]
  24. Hester G., Stark W., Moser M., Kallen J., Marković-Housley Z., Jansonius J. N. Crystal structure of phosphoserine aminotransferase from Escherichia coli at 2.3 A resolution: comparison of the unligated enzyme and a complex with alpha-methyl-l-glutamate. J Mol Biol. 1999 Feb 26;286(3):829–850. doi: 10.1006/jmbi.1998.2506. [DOI] [PubMed] [Google Scholar]
  25. Hooft R. W., Vriend G., Sander C., Abola E. E. Errors in protein structures. Nature. 1996 May 23;381(6580):272–272. doi: 10.1038/381272a0. [DOI] [PubMed] [Google Scholar]
  26. Hunziker N. Richner-Hanhart syndrome and tyrosinemia type II. Dermatologica. 1980;160(3):180–189. doi: 10.1159/000250493. [DOI] [PubMed] [Google Scholar]
  27. Hühn R., Stoermer H., Klingele B., Bausch E., Fois A., Farnetani M., Di Rocco M., Boué J., Kirk J. M., Coleman R. Novel and recurrent tyrosine aminotransferase gene mutations in tyrosinemia type II. Hum Genet. 1998 Mar;102(3):305–313. doi: 10.1007/s004390050696. [DOI] [PubMed] [Google Scholar]
  28. Iwasaki Y., Lamar C., Danenberg K., Pitot H. C. Studies on the induction and repression of enzymes in rat liver. Characterization and metabolic regulation of multiple forms of tyrosine aminotransferase. Eur J Biochem. 1973 Apr;34(2):347–357. doi: 10.1111/j.1432-1033.1973.tb02766.x. [DOI] [PubMed] [Google Scholar]
  29. Jensen R. A., Gu W. Evolutionary recruitment of biochemically specialized subdivisions of Family I within the protein superfamily of aminotransferases. J Bacteriol. 1996 Apr;178(8):2161–2171. doi: 10.1128/jb.178.8.2161-2171.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Jiang J. S., Brünger A. T. Protein hydration observed by X-ray diffraction. Solvation properties of penicillopepsin and neuraminidase crystal structures. J Mol Biol. 1994 Oct 14;243(1):100–115. doi: 10.1006/jmbi.1994.1633. [DOI] [PubMed] [Google Scholar]
  31. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  32. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  33. Kirsch J. F., Eichele G., Ford G. C., Vincent M. G., Jansonius J. N., Gehring H., Christen P. Mechanism of action of aspartate aminotransferase proposed on the basis of its spatial structure. J Mol Biol. 1984 Apr 15;174(3):497–525. doi: 10.1016/0022-2836(84)90333-4. [DOI] [PubMed] [Google Scholar]
  34. Kuramitsu S., Hiromi K., Hayashi H., Morino Y., Kagamiyama H. Pre-steady-state kinetics of Escherichia coli aspartate aminotransferase catalyzed reactions and thermodynamic aspects of its substrate specificity. Biochemistry. 1990 Jun 12;29(23):5469–5476. doi: 10.1021/bi00475a010. [DOI] [PubMed] [Google Scholar]
  35. Lamzin V. S., Wilson K. S. Automated refinement of protein models. Acta Crystallogr D Biol Crystallogr. 1993 Jan 1;49(Pt 1):129–147. doi: 10.1107/S0907444992008886. [DOI] [PubMed] [Google Scholar]
  36. Le Blancq S. M., Lanham S. M. Aspartate aminotransferase in Leishmania is a broad-spectrum transaminase. Trans R Soc Trop Med Hyg. 1984;78(3):373–375. doi: 10.1016/0035-9203(84)90125-1. [DOI] [PubMed] [Google Scholar]
  37. Malashkevich V. N., Onuffer J. J., Kirsch J. F., Jansonius J. N. Alternating arginine-modulated substrate specificity in an engineered tyrosine aminotransferase. Nat Struct Biol. 1995 Jul;2(7):548–553. doi: 10.1038/nsb0795-548. [DOI] [PubMed] [Google Scholar]
  38. Malashkevich V. N., Strokopytov B. V., Borisov V. V., Dauter Z., Wilson K. S., Torchinsky Y. M. Crystal structure of the closed form of chicken cytosolic aspartate aminotransferase at 1.9 A resolution. J Mol Biol. 1995 Mar 17;247(1):111–124. doi: 10.1006/jmbi.1994.0126. [DOI] [PubMed] [Google Scholar]
  39. McDonald I. K., Thornton J. M. Satisfying hydrogen bonding potential in proteins. J Mol Biol. 1994 May 20;238(5):777–793. doi: 10.1006/jmbi.1994.1334. [DOI] [PubMed] [Google Scholar]
  40. McPhalen C. A., Vincent M. G., Picot D., Jansonius J. N., Lesk A. M., Chothia C. Domain closure in mitochondrial aspartate aminotransferase. J Mol Biol. 1992 Sep 5;227(1):197–213. doi: 10.1016/0022-2836(92)90691-c. [DOI] [PubMed] [Google Scholar]
  41. Mehta P. K., Hale T. I., Christen P. Aminotransferases: demonstration of homology and division into evolutionary subgroups. Eur J Biochem. 1993 Jun 1;214(2):549–561. doi: 10.1111/j.1432-1033.1993.tb17953.x. [DOI] [PubMed] [Google Scholar]
  42. Miller J. E., Litwack G. Purification, properties, and identity of liver mitochondrial tyrosine aminotransferase. J Biol Chem. 1971 May 25;246(10):3234–3240. [PubMed] [Google Scholar]
  43. Montemartini M., Santomé J. A., Cazzulo J. J., Nowicki C. Production of aromatic alpha-hydroxyacids by epimastigotes of Trypanosoma cruzi, and its possible role in NADH reoxidation. FEMS Microbiol Lett. 1994 May 1;118(1-2):89–92. doi: 10.1111/j.1574-6968.1994.tb06808.x. [DOI] [PubMed] [Google Scholar]
  44. Montemartini M., Santomé J. A., Cazzulo J. J., Nowicki C. Purification and partial structural and kinetic characterization of an aromatic L-alpha-hydroxy acid dehydrogenase from epimastigotes of Trypanosoma cruzi. Mol Biochem Parasitol. 1994 Nov;68(1):15–23. doi: 10.1016/0166-6851(94)00145-6. [DOI] [PubMed] [Google Scholar]
  45. Montemartini M., Santomé J. A., Cazzulo J. J., Nowicki C. Purification and partial structural and kinetic characterization of tyrosine aminotransferase from epimastigotes of Trypanosoma cruzi. Biochem J. 1993 Jun 15;292(Pt 3):901–906. doi: 10.1042/bj2920901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Morris G. M., Goodsell D. S., Huey R., Olson A. J. Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. J Comput Aided Mol Des. 1996 Aug;10(4):293–304. doi: 10.1007/BF00124499. [DOI] [PubMed] [Google Scholar]
  47. Murshudov G. N., Vagin A. A., Dodson E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240–255. doi: 10.1107/S0907444996012255. [DOI] [PubMed] [Google Scholar]
  48. Natt E., Kida K., Odievre M., Di Rocco M., Scherer G. Point mutations in the tyrosine aminotransferase gene in tyrosinemia type II. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9297–9301. doi: 10.1073/pnas.89.19.9297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  50. Nogoceke E., Gommel D. U., Kiess M., Kalisz H. M., Flohé L. A unique cascade of oxidoreductases catalyses trypanothione-mediated peroxide metabolism in Crithidia fasciculata. Biol Chem. 1997 Aug;378(8):827–836. doi: 10.1515/bchm.1997.378.8.827. [DOI] [PubMed] [Google Scholar]
  51. Nowicki C., Montemartini M., Duschak V., Santomé J. A., Cazzulo J. J. Presence and subcellular localization of tyrosine aminotransferase and p-hydroxyphenyllactate dehydrogenase in epimastigotes of Trypanosoma cruzi. FEMS Microbiol Lett. 1992 Apr 15;71(2):119–124. doi: 10.1016/0378-1097(92)90498-d. [DOI] [PubMed] [Google Scholar]
  52. Nowicki C., Montemartini M., Hunter G. R., Blankenfeldt W., Kalisz H. M., Hecht H. J. Crystallization and preliminary X-ray analysis of tyrosine aminotransferase from Trypanosoma cruzi epimastigotes. Acta Crystallogr D Biol Crystallogr. 1998 Jan 1;54(Pt 1):105–107. doi: 10.1107/s0907444997008019. [DOI] [PubMed] [Google Scholar]
  53. Okamoto A., Higuchi T., Hirotsu K., Kuramitsu S., Kagamiyama H. X-ray crystallographic study of pyridoxal 5'-phosphate-type aspartate aminotransferases from Escherichia coli in open and closed form. J Biochem. 1994 Jul;116(1):95–107. doi: 10.1093/oxfordjournals.jbchem.a124509. [DOI] [PubMed] [Google Scholar]
  54. Okamoto A., Nakai Y., Hayashi H., Hirotsu K., Kagamiyama H. Crystal structures of Paracoccus denitrificans aromatic amino acid aminotransferase: a substrate recognition site constructed by rearrangement of hydrogen bond network. J Mol Biol. 1998 Jul 17;280(3):443–461. doi: 10.1006/jmbi.1998.1869. [DOI] [PubMed] [Google Scholar]
  55. Opperdoes F. R. Compartmentation of carbohydrate metabolism in trypanosomes. Annu Rev Microbiol. 1987;41:127–151. doi: 10.1146/annurev.mi.41.100187.001015. [DOI] [PubMed] [Google Scholar]
  56. Rege A. A. Purification and characterization of a tyrosine aminotransferase from Crithidia fasciculata. Mol Biochem Parasitol. 1987 Aug;25(1):1–9. doi: 10.1016/0166-6851(87)90012-0. [DOI] [PubMed] [Google Scholar]
  57. Rettenmeier R., Natt E., Zentgraf H., Scherer G. Isolation and characterization of the human tyrosine aminotransferase gene. Nucleic Acids Res. 1990 Jul 11;18(13):3853–3861. doi: 10.1093/nar/18.13.3853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Rhee S., Silva M. M., Hyde C. C., Rogers P. H., Metzler C. M., Metzler D. E., Arnone A. Refinement and comparisons of the crystal structures of pig cytosolic aspartate aminotransferase and its complex with 2-methylaspartate. J Biol Chem. 1997 Jul 11;272(28):17293–17302. [PubMed] [Google Scholar]
  59. Rice L. M., Brünger A. T. Torsion angle dynamics: reduced variable conformational sampling enhances crystallographic structure refinement. Proteins. 1994 Aug;19(4):277–290. doi: 10.1002/prot.340190403. [DOI] [PubMed] [Google Scholar]
  60. Sitkoff D., Sharp K. A., Honig B. Correlating solvation free energies and surface tensions of hydrocarbon solutes. Biophys Chem. 1994 Aug;51(2-3):397–409. doi: 10.1016/0301-4622(94)00062-x. [DOI] [PubMed] [Google Scholar]
  61. Stibbs H. H., Seed J. R. Short-term metabolism of (14-C) tryptophan in rats infected with Trypanosoma brucei gambiense. J Infect Dis. 1975 Apr;131(4):459–462. doi: 10.1093/infdis/131.4.459. [DOI] [PubMed] [Google Scholar]
  62. Sussman J. L., Lin D., Jiang J., Manning N. O., Prilusky J., Ritter O., Abola E. E. Protein Data Bank (PDB): database of three-dimensional structural information of biological macromolecules. Acta Crystallogr D Biol Crystallogr. 1998 Nov 1;54(Pt 6 1):1078–1084. doi: 10.1107/s0907444998009378. [DOI] [PubMed] [Google Scholar]
  63. Tong L. A., Rossmann M. G. The locked rotation function. Acta Crystallogr A. 1990 Oct 1;46(Pt 10):783–792. doi: 10.1107/s0108767390005530. [DOI] [PubMed] [Google Scholar]
  64. Vernal J., Cazzulo J. J., Nowicki C. Isolation and partial characterization of a broad specificity aminotransferase from Leishmania mexicana promastigotes. Mol Biochem Parasitol. 1998 Oct 30;96(1-2):83–92. doi: 10.1016/s0166-6851(98)00117-0. [DOI] [PubMed] [Google Scholar]
  65. Yano T., Kuramitsu S., Tanase S., Morino Y., Kagamiyama H. Role of Asp222 in the catalytic mechanism of Escherichia coli aspartate aminotransferase: the amino acid residue which enhances the function of the enzyme-bound coenzyme pyridoxal 5'-phosphate. Biochemistry. 1992 Jun 30;31(25):5878–5887. doi: 10.1021/bi00140a025. [DOI] [PubMed] [Google Scholar]
  66. el Sawalhy A., el-Sherbini S. Diagnosis of chronic camel trypanosomosis by detection of the antibody of trypanosome tyrosine aminotransferase. Dtsch Tierarztl Wochenschr. 1997 Dec;104(12):531–533. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES