Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Nov;8(11):2537–2540. doi: 10.1110/ps.8.11.2537

Thermolysin and mitochondrial processing peptidase: how far structure-functional convergence goes.

K S Makarova 1, N V Grishin 1
PMCID: PMC2144204  PMID: 10595562

Abstract

The structure-functional convergence between two Zn-dependent proteases, namely thermolysin and mitochondrial processing peptidase (MPP), is described. These two families of nonhomologous enzymes show not only functional convergence of several active site residues as in chymotrypsin and subtilisin, but also structural convergence of overall molecular architectures including the beta-sheet arrangement and packing of the surrounding alpha-helices. The major functionally important structural elements are present in both enzymes with different topological connections and often in reverse main-chain orientation, but display similar packing. The structural comparison helps to rationalize sequence "inversion" of the HEXXH thermolysin consensus present as HXXEH in MPP. The described structural convergence may be due to a limited number of alternatives to build a Zn-protease that utilizes hydrogen bonding between a substrate main chain and the enzyme beta-sheet for substrate binding.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrett A. J., Rawlings N. D. Families and clans of serine peptidases. Arch Biochem Biophys. 1995 Apr 20;318(2):247–250. doi: 10.1006/abbi.1995.1227. [DOI] [PubMed] [Google Scholar]
  2. Becker A., Schlichting I., Kabsch W., Groche D., Schultz S., Wagner A. F. Iron center, substrate recognition and mechanism of peptide deformylase. Nat Struct Biol. 1998 Dec;5(12):1053–1058. doi: 10.1038/4162. [DOI] [PubMed] [Google Scholar]
  3. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank. A computer-based archival file for macromolecular structures. Eur J Biochem. 1977 Nov 1;80(2):319–324. doi: 10.1111/j.1432-1033.1977.tb11885.x. [DOI] [PubMed] [Google Scholar]
  4. Bode W., Kress L. F., Meyer E. F., Gomis-Rüth F. X. The crystal structure of adamalysin II, a zinc-endopeptidase from the snake venom of the eastern diamondback rattlesnake Crotalus adamanteus. Braz J Med Biol Res. 1994 Aug;27(8):2049–2068. [PubMed] [Google Scholar]
  5. Braun H. P., Schmitz U. K. Are the 'core' proteins of the mitochondrial bc1 complex evolutionary relics of a processing protease? Trends Biochem Sci. 1995 May;20(5):171–175. doi: 10.1016/s0968-0004(00)88999-9. [DOI] [PubMed] [Google Scholar]
  6. Braun H. P., Schmitz U. K. Cytochrome-c reductase/processing peptidase complex from potato mitochondria. Methods Enzymol. 1995;260:70–82. doi: 10.1016/0076-6879(95)60131-7. [DOI] [PubMed] [Google Scholar]
  7. Chan M. K., Gong W., Rajagopalan P. T., Hao B., Tsai C. M., Pei D. Crystal structure of the Escherichia coli peptide deformylase. Biochemistry. 1997 Nov 11;36(45):13904–13909. doi: 10.1021/bi9711543. [DOI] [PubMed] [Google Scholar]
  8. Dardel F., Ragusa S., Lazennec C., Blanquet S., Meinnel T. Solution structure of nickel-peptide deformylase. J Mol Biol. 1998 Jul 17;280(3):501–513. doi: 10.1006/jmbi.1998.1882. [DOI] [PubMed] [Google Scholar]
  9. Gardiner E. J., Artymiuk P. J., Willett P. Clique-detection algorithms for matching three-dimensional molecular structures. J Mol Graph Model. 1997 Aug;15(4):245–253. doi: 10.1016/s1093-3263(97)00089-2. [DOI] [PubMed] [Google Scholar]
  10. Gibrat J. F., Madej T., Bryant S. H. Surprising similarities in structure comparison. Curr Opin Struct Biol. 1996 Jun;6(3):377–385. doi: 10.1016/s0959-440x(96)80058-3. [DOI] [PubMed] [Google Scholar]
  11. Hao B., Gong W., Rajagopalan P. T., Zhou Y., Pei D., Chan M. K. Structural basis for the design of antibiotics targeting peptide deformylase. Biochemistry. 1999 Apr 13;38(15):4712–4719. doi: 10.1021/bi982594c. [DOI] [PubMed] [Google Scholar]
  12. Holden H. M., Tronrud D. E., Monzingo A. F., Weaver L. H., Matthews B. W. Slow- and fast-binding inhibitors of thermolysin display different modes of binding: crystallographic analysis of extended phosphonamidate transition-state analogues. Biochemistry. 1987 Dec 29;26(26):8542–8553. doi: 10.1021/bi00400a008. [DOI] [PubMed] [Google Scholar]
  13. Holland D. R., Hausrath A. C., Juers D., Matthews B. W. Structural analysis of zinc substitutions in the active site of thermolysin. Protein Sci. 1995 Oct;4(10):1955–1965. doi: 10.1002/pro.5560041001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Holm L., Sander C. Dali: a network tool for protein structure comparison. Trends Biochem Sci. 1995 Nov;20(11):478–480. doi: 10.1016/s0968-0004(00)89105-7. [DOI] [PubMed] [Google Scholar]
  15. Holm L., Sander C. Protein folds and families: sequence and structure alignments. Nucleic Acids Res. 1999 Jan 1;27(1):244–247. doi: 10.1093/nar/27.1.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Iwata S., Lee J. W., Okada K., Lee J. K., Iwata M., Rasmussen B., Link T. A., Ramaswamy S., Jap B. K. Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science. 1998 Jul 3;281(5373):64–71. doi: 10.1126/science.281.5373.64. [DOI] [PubMed] [Google Scholar]
  17. Kuhn P., Knapp M., Soltis S. M., Ganshaw G., Thoene M., Bott R. The 0.78 A structure of a serine protease: Bacillus lentus subtilisin. Biochemistry. 1998 Sep 29;37(39):13446–13452. doi: 10.1021/bi9813983. [DOI] [PubMed] [Google Scholar]
  18. Luciano P., Géli V. The mitochondrial processing peptidase: function and specificity. Experientia. 1996 Dec 15;52(12):1077–1082. doi: 10.1007/BF01952105. [DOI] [PubMed] [Google Scholar]
  19. Meinnel T., Blanquet S., Dardel F. A new subclass of the zinc metalloproteases superfamily revealed by the solution structure of peptide deformylase. J Mol Biol. 1996 Sep 27;262(3):375–386. doi: 10.1006/jmbi.1996.0521. [DOI] [PubMed] [Google Scholar]
  20. Murzin A. G., Brenner S. E., Hubbard T., Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol. 1995 Apr 7;247(4):536–540. doi: 10.1006/jmbi.1995.0159. [DOI] [PubMed] [Google Scholar]
  21. Murzin A. G. How far divergent evolution goes in proteins. Curr Opin Struct Biol. 1998 Jun;8(3):380–387. doi: 10.1016/s0959-440x(98)80073-0. [DOI] [PubMed] [Google Scholar]
  22. Ragusa S., Mouchet P., Lazennec C., Dive V., Meinnel T. Substrate recognition and selectivity of peptide deformylase. Similarities and differences with metzincins and thermolysin. J Mol Biol. 1999 Jun 25;289(5):1445–1457. doi: 10.1006/jmbi.1999.2832. [DOI] [PubMed] [Google Scholar]
  23. Rawlings N. D., Barrett A. J. Evolutionary families of metallopeptidases. Methods Enzymol. 1995;248:183–228. doi: 10.1016/0076-6879(95)48015-3. [DOI] [PubMed] [Google Scholar]
  24. Russell R. B. Detection of protein three-dimensional side-chain patterns: new examples of convergent evolution. J Mol Biol. 1998 Jun 26;279(5):1211–1227. doi: 10.1006/jmbi.1998.1844. [DOI] [PubMed] [Google Scholar]
  25. Saavedra-Alanis V. M., Rysavy P., Rosenberg L. E., Kalousek F. Rat liver mitochondrial processing peptidase. Both alpha- and beta-subunits are required for activity. J Biol Chem. 1994 Mar 25;269(12):9284–9288. [PubMed] [Google Scholar]
  26. Tanudji M., Sjöling S., Glaser E., Whelan J. Signals required for the import and processing of the alternative oxidase into mitochondria. J Biol Chem. 1999 Jan 15;274(3):1286–1293. doi: 10.1074/jbc.274.3.1286. [DOI] [PubMed] [Google Scholar]
  27. Tronrud D. E., Holden H. M., Matthews B. W. Structures of two thermolysin-inhibitor complexes that differ by a single hydrogen bond. Science. 1987 Jan 30;235(4788):571–574. doi: 10.1126/science.3810156. [DOI] [PubMed] [Google Scholar]
  28. Tronrud D. E., Roderick S. L., Matthews B. W. Structural basis for the action of thermolysin. Matrix Suppl. 1992;1:107–111. [PubMed] [Google Scholar]
  29. Tsukada H., Blow D. M. Structure of alpha-chymotrypsin refined at 1.68 A resolution. J Mol Biol. 1985 Aug 20;184(4):703–711. doi: 10.1016/0022-2836(85)90314-6. [DOI] [PubMed] [Google Scholar]
  30. Waltner M., Weiner H. Conversion of a nonprocessed mitochondrial precursor protein into one that is processed by the mitochondrial processing peptidase. J Biol Chem. 1995 Nov 3;270(44):26311–26317. doi: 10.1074/jbc.270.44.26311. [DOI] [PubMed] [Google Scholar]
  31. Xia D., Yu C. A., Kim H., Xia J. Z., Kachurin A. M., Zhang L., Yu L., Deisenhofer J. Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science. 1997 Jul 4;277(5322):60–66. doi: 10.1126/science.277.5322.60. [DOI] [PubMed] [Google Scholar]
  32. Zhang Z., Huang L., Shulmeister V. M., Chi Y. I., Kim K. K., Hung L. W., Crofts A. R., Berry E. A., Kim S. H. Electron transfer by domain movement in cytochrome bc1. Nature. 1998 Apr 16;392(6677):677–684. doi: 10.1038/33612. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES