Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Nov;8(11):2304–2311. doi: 10.1110/ps.8.11.2304

Identification of ligand effector binding sites in transmembrane regions of the human G protein-coupled C3a receptor.

J Sun 1, J A Ember 1, T H Chao 1, Y Fukuoka 1, R D Ye 1, T E Hugli 1
PMCID: PMC2144205  PMID: 10595533

Abstract

The human C3a anaphylatoxin receptor (C3aR) is a G protein-coupled receptor (GPCR) composed of seven transmembrane alpha-helices connected by hydrophilic loops. Previous studies of chimeric C3aR/C5aR and loop deletions in C3aR demonstrated that the large extracellular loop2 plays an important role in noneffector ligand binding; however, the effector binding site for C3a has not been identified. In this study, selected charged residues in the transmembrane regions of C3aR were replaced by Ala using site-directed mutagenesis, and mutant receptors were stably expressed in the RBL-2H3 cell line. Ligand binding studies demonstrated that R161A (helix IV), R340A (helix V), and D417A (helix VII) showed no binding activity, although full expression of these receptors was established by flow cytometric analysis. C3a induced very weak intracellular calcium flux in cells expressing these three mutant receptors. H81A (helix II) and K96A (helix III) showed decreased ligand binding activity. The calcium flux induced by C3a in H81A and K96A cells was also consistently reduced. These findings suggest that the charged transmembrane residues Arg161, Arg340, and Asp417 in C3aR are essential for ligand effector binding and/or signal coupling, and that residues His81 and Lys96 may contribute less directly to the overall free energy of ligand binding. These transmembrane residues in C3aR identify specific molecular contacts for ligand interactions that account for C3a-induced receptor activation.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames R. S., Li Y., Sarau H. M., Nuthulaganti P., Foley J. J., Ellis C., Zeng Z., Su K., Jurewicz A. J., Hertzberg R. P. Molecular cloning and characterization of the human anaphylatoxin C3a receptor. J Biol Chem. 1996 Aug 23;271(34):20231–20234. doi: 10.1074/jbc.271.34.20231. [DOI] [PubMed] [Google Scholar]
  2. Baldwin J. M. The probable arrangement of the helices in G protein-coupled receptors. EMBO J. 1993 Apr;12(4):1693–1703. doi: 10.1002/j.1460-2075.1993.tb05814.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Caporale L. H., Tippett P. S., Erickson B. W., Hugli T. E. The active site of C3a anaphylatoxin. J Biol Chem. 1980 Nov 25;255(22):10758–10763. [PubMed] [Google Scholar]
  4. Chao T. H., Ember J. A., Wang M., Bayon Y., Hugli T. E., Ye R. D. Role of the second extracellular loop of human C3a receptor in agonist binding and receptor function. J Biol Chem. 1999 Apr 2;274(14):9721–9728. doi: 10.1074/jbc.274.14.9721. [DOI] [PubMed] [Google Scholar]
  5. Chazin W. J., Hugli T. E., Wright P. E. 1H NMR studies of human C3a anaphylatoxin in solution: sequential resonance assignments, secondary structure, and global fold. Biochemistry. 1988 Dec 27;27(26):9139–9148. doi: 10.1021/bi00426a011. [DOI] [PubMed] [Google Scholar]
  6. Crass T., Raffetseder U., Martin U., Grove M., Klos A., Köhl J., Bautsch W. Expression cloning of the human C3a anaphylatoxin receptor (C3aR) from differentiated U-937 cells. Eur J Immunol. 1996 Aug;26(8):1944–1950. doi: 10.1002/eji.1830260840. [DOI] [PubMed] [Google Scholar]
  7. Daffern P. J., Pfeifer P. H., Ember J. A., Hugli T. E. C3a is a chemotaxin for human eosinophils but not for neutrophils. I. C3a stimulation of neutrophils is secondary to eosinophil activation. J Exp Med. 1995 Jun 1;181(6):2119–2127. doi: 10.1084/jem.181.6.2119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DeMartino J. A., Konteatis Z. D., Siciliano S. J., Van Riper G., Underwood D. J., Fischer P. A., Springer M. S. Arginine 206 of the C5a receptor is critical for ligand recognition and receptor activation by C-terminal hexapeptide analogs. J Biol Chem. 1995 Jul 7;270(27):15966–15969. doi: 10.1074/jbc.270.27.15966. [DOI] [PubMed] [Google Scholar]
  9. Du P., Salon J. A., Tamm J. A., Hou C., Cui W., Walker M. W., Adham N., Dhanoa D. S., Islam I., Vaysse P. J. Modeling the G-protein-coupled neuropeptide Y Y1 receptor agonist and antagonist binding sites. Protein Eng. 1997 Feb;10(2):109–117. doi: 10.1093/protein/10.2.109. [DOI] [PubMed] [Google Scholar]
  10. Dufau M. L. The luteinizing hormone receptor. Annu Rev Physiol. 1998;60:461–496. doi: 10.1146/annurev.physiol.60.1.461. [DOI] [PubMed] [Google Scholar]
  11. Ember J. A., Hugli T. E. Complement factors and their receptors. Immunopharmacology. 1997 Dec;38(1-2):3–15. doi: 10.1016/s0162-3109(97)00088-x. [DOI] [PubMed] [Google Scholar]
  12. Ember J. A., Johansen N. L., Hugli T. E. Designing synthetic superagonists of C3a anaphylatoxin. Biochemistry. 1991 Apr 16;30(15):3603–3612. doi: 10.1021/bi00229a003. [DOI] [PubMed] [Google Scholar]
  13. Fuhlbrigge R. C., Fine S. M., Unanue E. R., Chaplin D. D. Expression of membrane interleukin 1 by fibroblasts transfected with murine pro-interleukin 1 alpha cDNA. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5649–5653. doi: 10.1073/pnas.85.15.5649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fukuoka Y., Ember J. A., Hugli T. E. Cloning and characterization of rat C3a receptor: differential expression of rat C3a and C5a receptors by LPS stimulation. Biochem Biophys Res Commun. 1998 Jan 26;242(3):663–668. doi: 10.1006/bbrc.1997.8034. [DOI] [PubMed] [Google Scholar]
  15. Fukuoka Y., Ember J. A., Hugli T. E. Molecular cloning of two isoforms of the guinea pig C3a anaphylatoxin receptor: alternative splicing in the large extracellular loop. J Immunol. 1998 Sep 15;161(6):2977–2984. [PubMed] [Google Scholar]
  16. Gasque P., Singhrao S. K., Neal J. W., Wang P., Sayah S., Fontaine M., Morgan B. P. The receptor for complement anaphylatoxin C3a is expressed by myeloid cells and nonmyeloid cells in inflamed human central nervous system: analysis in multiple sclerosis and bacterial meningitis. J Immunol. 1998 Apr 1;160(7):3543–3554. [PubMed] [Google Scholar]
  17. Gether U., Kobilka B. K. G protein-coupled receptors. II. Mechanism of agonist activation. J Biol Chem. 1998 Jul 17;273(29):17979–17982. doi: 10.1074/jbc.273.29.17979. [DOI] [PubMed] [Google Scholar]
  18. Glovsky M. M., Hugli T. E., Ishizaka T., Lichtenstein L. M., Erickson B. W. Anaphylatoxin-induced histamine release with human leukocytes: studies of C3a leukocyte binding and histamine release. J Clin Invest. 1979 Sep;64(3):804–811. doi: 10.1172/JCI109527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Grötzinger J., Engels M., Jacoby E., Wollmer A., Strassburger W. A model for the C5a receptor and for its interaction with the ligand [corrected]. Protein Eng. 1991 Oct;4(7):767–771. doi: 10.1093/protein/4.7.767. [DOI] [PubMed] [Google Scholar]
  20. Hartmann K., Henz B. M., Krüger-Krasagakes S., Köhl J., Burger R., Guhl S., Haase I., Lippert U., Zuberbier T. C3a and C5a stimulate chemotaxis of human mast cells. Blood. 1997 Apr 15;89(8):2863–2870. [PubMed] [Google Scholar]
  21. Higuchi R., Krummel B., Saiki R. K. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 1988 Aug 11;16(15):7351–7367. doi: 10.1093/nar/16.15.7351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Horn F., Vriend G. G protein-coupled receptors in silico. J Mol Med (Berl) 1998 Jun;76(7):464–468. doi: 10.1007/s001090050240. [DOI] [PubMed] [Google Scholar]
  23. Horn F., Weare J., Beukers M. W., Hörsch S., Bairoch A., Chen W., Edvardsen O., Campagne F., Vriend G. GPCRDB: an information system for G protein-coupled receptors. Nucleic Acids Res. 1998 Jan 1;26(1):275–279. doi: 10.1093/nar/26.1.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hsu M. H., Ember J. A., Wang M., Prossnitz E. R., Hugli T. E., Ye R. D. Cloning and functional characterization of the mouse C3a anaphylatoxin receptor gene. Immunogenetics. 1997;47(1):64–72. doi: 10.1007/s002510050327. [DOI] [PubMed] [Google Scholar]
  25. Huber R., Scholze H., Pâques E. P., Deisenhofer J. Crystal structure analysis and molecular model of human C3a anaphylatoxin. Hoppe Seylers Z Physiol Chem. 1980 Sep;361(9):1389–1399. doi: 10.1515/bchm2.1980.361.2.1389. [DOI] [PubMed] [Google Scholar]
  26. Hugli T. E., Gerard C., Kawahara M., Scheetz M. E., 2nd, Barton R., Briggs S., Koppel G., Russell S. Isolation of three separate anaphylatoxins from complement-activated human serum. Mol Cell Biochem. 1981 Dec 4;41:59–66. doi: 10.1007/BF00225297. [DOI] [PubMed] [Google Scholar]
  27. Hugli T. E. Human anaphylatoxin (C3a) from the third component of complement. Primary structure. J Biol Chem. 1975 Nov 10;250(21):8293–8301. [PubMed] [Google Scholar]
  28. Hugli T. E. Structure and function of the anaphylatoxins. Springer Semin Immunopathol. 1984;7(2-3):193–219. doi: 10.1007/BF01893020. [DOI] [PubMed] [Google Scholar]
  29. Hunyady L., Balla T., Catt K. J. The ligand binding site of the angiotensin AT1 receptor. Trends Pharmacol Sci. 1996 Apr;17(4):135–140. doi: 10.1016/0165-6147(96)81588-4. [DOI] [PubMed] [Google Scholar]
  30. Inoue Y., Nakamura N., Inagami T. A review of mutagenesis studies of angiotensin II type 1 receptor, the three-dimensional receptor model in search of the agonist and antagonist binding site and the hypothesis of a receptor activation mechanism. J Hypertens. 1997 Jul;15(7):703–714. doi: 10.1097/00004872-199715070-00001. [DOI] [PubMed] [Google Scholar]
  31. Jarnagin K., Bhakta S., Zuppan P., Yee C., Ho T., Phan T., Tahilramani R., Pease J. H., Miller A., Freedman R. Mutations in the B2 bradykinin receptor reveal a different pattern of contacts for peptidic agonists and peptidic antagonists. J Biol Chem. 1996 Nov 8;271(45):28277–28286. doi: 10.1074/jbc.271.45.28277. [DOI] [PubMed] [Google Scholar]
  32. Lu Z. X., Fok K. F., Erickson B. W., Hugli T. E. Conformational analysis of COOH-terminal segments of human C3a. Evidence of ordered conformation in an active 21-residue peptide. J Biol Chem. 1984 Jun 25;259(12):7367–7370. [PubMed] [Google Scholar]
  33. Miettinen H. M., Mills J. S., Gripentrog J. M., Dratz E. A., Granger B. L., Jesaitis A. J. The ligand binding site of the formyl peptide receptor maps in the transmembrane region. J Immunol. 1997 Oct 15;159(8):4045–4054. [PubMed] [Google Scholar]
  34. Mills J. S., Miettinen H. M., Barnidge D., Vlases M. J., Wimer-Mackin S., Dratz E. A., Sunner J., Jesaitis A. J. Identification of a ligand binding site in the human neutrophil formyl peptide receptor using a site-specific fluorescent photoaffinity label and mass spectrometry. J Biol Chem. 1998 Apr 24;273(17):10428–10435. doi: 10.1074/jbc.273.17.10428. [DOI] [PubMed] [Google Scholar]
  35. Mollison K. W., Mandecki W., Zuiderweg E. R., Fayer L., Fey T. A., Krause R. A., Conway R. G., Miller L., Edalji R. P., Shallcross M. A. Identification of receptor-binding residues in the inflammatory complement protein C5a by site-directed mutagenesis. Proc Natl Acad Sci U S A. 1989 Jan;86(1):292–296. doi: 10.1073/pnas.86.1.292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Monk P. N., Barker M. D., Partridge L. J., Pease J. E. Mutation of glutamate 199 of the human C5a receptor defines a binding site for ligand distinct from the receptor N terminus. J Biol Chem. 1995 Jul 14;270(28):16625–16629. doi: 10.1074/jbc.270.28.16625. [DOI] [PubMed] [Google Scholar]
  37. Morgan B. P., Gasque P., Singhrao S., Piddlesden S. J. The role of complement in disorders of the nervous system. Immunopharmacology. 1997 Dec;38(1-2):43–50. doi: 10.1016/s0162-3109(97)00059-3. [DOI] [PubMed] [Google Scholar]
  38. Muto Y., Fukumoto Y., Arata Y. Proton nuclear magnetic resonance study of the third component of complement: solution conformation of the carboxyl-terminal segment of C3a fragment. Biochemistry. 1985 Nov 5;24(23):6659–6665. doi: 10.1021/bi00344a054. [DOI] [PubMed] [Google Scholar]
  39. Peitsch M. C., Herzyk P., Wells T. N., Hubbard R. E. Automated modelling of the transmembrane region of G-protein coupled receptor by Swiss-model. Receptors Channels. 1996;4(3):161–164. [PubMed] [Google Scholar]
  40. Prossnitz E. R., Schreiber R. E., Bokoch G. M., Ye R. D. Binding of low affinity N-formyl peptide receptors to G protein. Characterization of a novel inactive receptor intermediate. J Biol Chem. 1995 May 5;270(18):10686–10694. doi: 10.1074/jbc.270.18.10686. [DOI] [PubMed] [Google Scholar]
  41. Pulakat L., Tadessee A. S., Dittus J. J., Gavini N. Role of Lys215 located in the fifth transmembrane domain of the AT2 receptor in ligand-receptor interaction. Regul Pept. 1998 Jan 2;73(1):51–57. doi: 10.1016/s0167-0115(97)01059-8. [DOI] [PubMed] [Google Scholar]
  42. Quehenberger O., Pan Z. K., Prossnitz E. R., Cavanagh S. L., Cochrane C. G., Ye R. D. Identification of an N-formyl peptide receptor ligand binding domain by a gain-of-function approach. Biochem Biophys Res Commun. 1997 Sep 18;238(2):377–381. doi: 10.1006/bbrc.1997.7298. [DOI] [PubMed] [Google Scholar]
  43. Raffetseder U., Röper D., Mery L., Gietz C., Klos A., Grötzinger J., Wollmer A., Boulay F., Köhl J., Bautsch W. Site-directed mutagenesis of conserved charged residues in the helical region of the human C5a receptor. Arg2O6 determines high-affinity binding sites of C5a receptor. Eur J Biochem. 1996 Jan 15;235(1-2):82–90. doi: 10.1111/j.1432-1033.1996.00082.x. [DOI] [PubMed] [Google Scholar]
  44. Regal J. F. Role of the complement system in pulmonary disorders. Immunopharmacology. 1997 Dec;38(1-2):17–25. doi: 10.1016/s0162-3109(97)00058-1. [DOI] [PubMed] [Google Scholar]
  45. Roglic A., Prossnitz E. R., Cavanagh S. L., Pan Z., Zou A., Ye R. D. cDNA cloning of a novel G protein-coupled receptor with a large extracellular loop structure. Biochim Biophys Acta. 1996 Feb 7;1305(1-2):39–43. doi: 10.1016/0167-4781(95)00209-x. [DOI] [PubMed] [Google Scholar]
  46. Siciliano S. J., Rollins T. E., DeMartino J., Konteatis Z., Malkowitz L., Van Riper G., Bondy S., Rosen H., Springer M. S. Two-site binding of C5a by its receptor: an alternative binding paradigm for G protein-coupled receptors. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1214–1218. doi: 10.1073/pnas.91.4.1214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Tornetta M. A., Foley J. J., Sarau H. M., Ames R. S. The mouse anaphylatoxin C3a receptor: molecular cloning, genomic organization, and functional expression. J Immunol. 1997 Jun 1;158(11):5277–5282. [PubMed] [Google Scholar]
  48. Unson C. G., Erickson B. W., Hugli T. E. Active site of C3a anaphylatoxin: contributions of the lipophilic and orienting residues. Biochemistry. 1984 Feb 14;23(4):585–589. doi: 10.1021/bi00299a001. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES