Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Nov;8(11):2312–2329. doi: 10.1110/ps.8.11.2312

The role of position a in determining the stability and oligomerization state of alpha-helical coiled coils: 20 amino acid stability coefficients in the hydrophobic core of proteins.

K Wagschal 1, B Tripet 1, P Lavigne 1, C Mant 1, R S Hodges 1
PMCID: PMC2144206  PMID: 10595534

Abstract

We describe here a systematic investigation into the role of position a in the hydrophobic core of a model coiled-coil protein in determining coiled-coil stability and oligomerization state. We employed a model coiled coil that allowed the formation of an extended three-stranded trimeric oligomerization state for some of the analogs; however, due to the presence of a Cys-Gly-Gly linker, unfolding occurred from the same two-stranded monomeric oligomerization state for all of the analogs. Denaturation from a two-stranded state allowed us to measure the relative contribution of 20 different amino acid side chains to coiled-coil stability from chemical denaturation profiles. In addition, the relative hydrophobicity of the substituted amino acid side chains was assessed by reversed-phase high-performance liquid chromatography and found to correlate very highly (R = 0.95) with coiled-coil stability. We also determined the effect of position a in specifying the oligomerization state using ultracentrifugation as well as high-performance size-exclusion chromatography. We found that nine of the analogs populated one oligomerization state exclusively at peptide concentrations of 50 microM under benign buffer conditions. The Leu-, Tyr-, Gln-, and His-substituted analogs were found to be exclusively three-stranded trimers, while the Asn-, Lys-, Orn-, Arg-, and Trp-substituted analogs formed exclusively two-stranded monomers. Modeling results for the Leu-substituted analog showed that a three-stranded oligomerization state is preferred due to increased side-chain burial, while a two-stranded oligomerization state was observed for the Trp analog due to unfavorable cavity formation in the three-stranded state.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamson J. G., Zhou N. E., Hodges R. S. Structure, function and application of the coiled-coil protein folding motif. Curr Opin Biotechnol. 1993 Aug;4(4):428–437. doi: 10.1016/0958-1669(93)90008-k. [DOI] [PubMed] [Google Scholar]
  2. Alber T. Structure of the leucine zipper. Curr Opin Genet Dev. 1992 Apr;2(2):205–210. doi: 10.1016/s0959-437x(05)80275-8. [DOI] [PubMed] [Google Scholar]
  3. Alberti S., Oehler S., von Wilcken-Bergmann B., Müller-Hill B. Genetic analysis of the leucine heptad repeats of Lac repressor: evidence for a 4-helical bundle. EMBO J. 1993 Aug;12(8):3227–3236. doi: 10.1002/j.1460-2075.1993.tb05992.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baxevanis A. D., Vinson C. R. Interactions of coiled coils in transcription factors: where is the specificity? Curr Opin Genet Dev. 1993 Apr;3(2):278–285. doi: 10.1016/0959-437x(93)90035-n. [DOI] [PubMed] [Google Scholar]
  5. Beck K., Gambee J. E., Kamawal A., Bächinger H. P. A single amino acid can switch the oligomerization state of the alpha-helical coiled-coil domain of cartilage matrix protein. EMBO J. 1997 Jul 1;16(13):3767–3777. doi: 10.1093/emboj/16.13.3767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Berger B., Wilson D. B., Wolf E., Tonchev T., Milla M., Kim P. S. Predicting coiled coils by use of pairwise residue correlations. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8259–8263. doi: 10.1073/pnas.92.18.8259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Betz S. F., Bryson J. W., DeGrado W. F. Native-like and structurally characterized designed alpha-helical bundles. Curr Opin Struct Biol. 1995 Aug;5(4):457–463. doi: 10.1016/0959-440x(95)80029-8. [DOI] [PubMed] [Google Scholar]
  8. Blondelle S. E., Ostresh J. M., Houghten R. A., Pérez-Payá E. Induced conformational states of amphipathic peptides in aqueous/lipid environments. Biophys J. 1995 Jan;68(1):351–359. doi: 10.1016/S0006-3495(95)80194-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chang C. T., Wu C. S., Yang J. T. Circular dichroic analysis of protein conformation: inclusion of the beta-turns. Anal Biochem. 1978 Nov;91(1):13–31. doi: 10.1016/0003-2697(78)90812-6. [DOI] [PubMed] [Google Scholar]
  10. Chao H., Bautista D. L., Litowski J., Irvin R. T., Hodges R. S. Use of a heterodimeric coiled-coil system for biosensor application and affinity purification. J Chromatogr B Biomed Sci Appl. 1998 Sep 11;715(1):307–329. doi: 10.1016/s0378-4347(98)00172-8. [DOI] [PubMed] [Google Scholar]
  11. Chen Y. H., Yang J. T., Chau K. H. Determination of the helix and beta form of proteins in aqueous solution by circular dichroism. Biochemistry. 1974 Jul 30;13(16):3350–3359. doi: 10.1021/bi00713a027. [DOI] [PubMed] [Google Scholar]
  12. Chong P. C., Hodges R. S. Proximity of sulfhydryl groups to the sites of interaction between components of the troponin complex from rabbit skeletal muscle. J Biol Chem. 1982 Mar 10;257(5):2549–2555. [PubMed] [Google Scholar]
  13. Cohen C., Parry D. A. Alpha-helical coiled coils and bundles: how to design an alpha-helical protein. Proteins. 1990;7(1):1–15. doi: 10.1002/prot.340070102. [DOI] [PubMed] [Google Scholar]
  14. Cooper T. M., Woody R. W. The effect of conformation on the CD of interacting helices: a theoretical study of tropomyosin. Biopolymers. 1990;30(7-8):657–676. doi: 10.1002/bip.360300703. [DOI] [PubMed] [Google Scholar]
  15. Dill K. A., Bromberg S., Yue K., Fiebig K. M., Yee D. P., Thomas P. D., Chan H. S. Principles of protein folding--a perspective from simple exact models. Protein Sci. 1995 Apr;4(4):561–602. doi: 10.1002/pro.5560040401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Eisenberg D., McLachlan A. D. Solvation energy in protein folding and binding. Nature. 1986 Jan 16;319(6050):199–203. doi: 10.1038/319199a0. [DOI] [PubMed] [Google Scholar]
  17. Eriksson A. E., Baase W. A., Zhang X. J., Heinz D. W., Blaber M., Baldwin E. P., Matthews B. W. Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science. 1992 Jan 10;255(5041):178–183. doi: 10.1126/science.1553543. [DOI] [PubMed] [Google Scholar]
  18. Glover J. N., Harrison S. C. Crystal structure of the heterodimeric bZIP transcription factor c-Fos-c-Jun bound to DNA. Nature. 1995 Jan 19;373(6511):257–261. doi: 10.1038/373257a0. [DOI] [PubMed] [Google Scholar]
  19. Gonzalez L., Jr, Brown R. A., Richardson D., Alber T. Crystal structures of a single coiled-coil peptide in two oligomeric states reveal the basis for structural polymorphism. Nat Struct Biol. 1996 Dec;3(12):1002–1009. doi: 10.1038/nsb1296-1002. [DOI] [PubMed] [Google Scholar]
  20. Gonzalez L., Jr, Plecs J. J., Alber T. An engineered allosteric switch in leucine-zipper oligomerization. Nat Struct Biol. 1996 Jun;3(6):510–515. doi: 10.1038/nsb0696-510. [DOI] [PubMed] [Google Scholar]
  21. Gonzalez L., Jr, Woolfson D. N., Alber T. Buried polar residues and structural specificity in the GCN4 leucine zipper. Nat Struct Biol. 1996 Dec;3(12):1011–1018. doi: 10.1038/nsb1296-1011. [DOI] [PubMed] [Google Scholar]
  22. Greenfield N. J., Hitchcock-DeGregori S. E. The stability of tropomyosin, a two-stranded coiled-coil protein, is primarily a function of the hydrophobicity of residues at the helix-helix interface. Biochemistry. 1995 Dec 26;34(51):16797–16805. doi: 10.1021/bi00051a030. [DOI] [PubMed] [Google Scholar]
  23. Greenfield N. J., Montelione G. T., Farid R. S., Hitchcock-DeGregori S. E. The structure of the N-terminus of striated muscle alpha-tropomyosin in a chimeric peptide: nuclear magnetic resonance structure and circular dichroism studies. Biochemistry. 1998 May 26;37(21):7834–7843. doi: 10.1021/bi973167m. [DOI] [PubMed] [Google Scholar]
  24. Harbury P. B., Zhang T., Kim P. S., Alber T. A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science. 1993 Nov 26;262(5138):1401–1407. doi: 10.1126/science.8248779. [DOI] [PubMed] [Google Scholar]
  25. Hodges R. S. Boehringer Mannheim award lecture 1995. La conference Boehringer Mannheim 1995. De novo design of alpha-helical proteins: basic research to medical applications. Biochem Cell Biol. 1996;74(2):133–154. doi: 10.1139/o96-015. [DOI] [PubMed] [Google Scholar]
  26. Hodges R. S., Saund A. K., Chong P. C., St-Pierre S. A., Reid R. E. Synthetic model for two-stranded alpha-helical coiled-coils. Design, synthesis, and characterization of an 86-residue analog of tropomyosin. J Biol Chem. 1981 Feb 10;256(3):1214–1224. [PubMed] [Google Scholar]
  27. Hodges R. S. Unzipping the secrets of coiled-coils. Curr Biol. 1992 Mar;2(3):122–124. doi: 10.1016/0960-9822(92)90241-2. [DOI] [PubMed] [Google Scholar]
  28. Hodges R. S., Zhou N. E., Kay C. M., Semchuk P. D. Synthetic model proteins: contribution of hydrophobic residues and disulfide bonds to protein stability. Pept Res. 1990 May-Jun;3(3):123–137. [PubMed] [Google Scholar]
  29. Johnson M. L., Correia J. J., Yphantis D. A., Halvorson H. R. Analysis of data from the analytical ultracentrifuge by nonlinear least-squares techniques. Biophys J. 1981 Dec;36(3):575–588. doi: 10.1016/S0006-3495(81)84753-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Junius F. K., Mackay J. P., Bubb W. A., Jensen S. A., Weiss A. S., King G. F. Nuclear magnetic resonance characterization of the Jun leucine zipper domain: unusual properties of coiled-coil interfacial polar residues. Biochemistry. 1995 May 9;34(18):6164–6174. doi: 10.1021/bi00018a020. [DOI] [PubMed] [Google Scholar]
  31. Kammerer R. A. Alpha-helical coiled-coil oligomerization domains in extracellular proteins. Matrix Biol. 1997 Mar;15(8-9):555–568. doi: 10.1016/s0945-053x(97)90031-7. [DOI] [PubMed] [Google Scholar]
  32. Kammerer R. A., Schulthess T., Landwehr R., Lustig A., Fischer D., Engel J. Tenascin-C hexabrachion assembly is a sequential two-step process initiated by coiled-coil alpha-helices. J Biol Chem. 1998 Apr 24;273(17):10602–10608. doi: 10.1074/jbc.273.17.10602. [DOI] [PubMed] [Google Scholar]
  33. Kohn W. D., Kay C. M., Hodges R. S. Orientation, positional, additivity, and oligomerization-state effects of interhelical ion pairs in alpha-helical coiled-coils. J Mol Biol. 1998 Nov 13;283(5):993–1012. doi: 10.1006/jmbi.1998.2125. [DOI] [PubMed] [Google Scholar]
  34. Kohn W. D., Kay C. M., Hodges R. S. Protein destabilization by electrostatic repulsions in the two-stranded alpha-helical coiled-coil/leucine zipper. Protein Sci. 1995 Feb;4(2):237–250. doi: 10.1002/pro.5560040210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Kohn W. D., Mant C. T., Hodges R. S. Alpha-helical protein assembly motifs. J Biol Chem. 1997 Jan 31;272(5):2583–2586. doi: 10.1074/jbc.272.5.2583. [DOI] [PubMed] [Google Scholar]
  36. Lau S. Y., Taneja A. K., Hodges R. S. Synthesis of a model protein of defined secondary and quaternary structure. Effect of chain length on the stabilization and formation of two-stranded alpha-helical coiled-coils. J Biol Chem. 1984 Nov 10;259(21):13253–13261. [PubMed] [Google Scholar]
  37. Lavigne P., Crump M. P., Gagné S. M., Hodges R. S., Kay C. M., Sykes B. D. Insights into the mechanism of heterodimerization from the 1H-NMR solution structure of the c-Myc-Max heterodimeric leucine zipper. J Mol Biol. 1998 Aug 7;281(1):165–181. doi: 10.1006/jmbi.1998.1914. [DOI] [PubMed] [Google Scholar]
  38. Lavigne P., Kondejewski L. H., Houston M. E., Jr, Sönnichsen F. D., Lix B., Skyes B. D., Hodges R. S., Kay C. M. Preferential heterodimeric parallel coiled-coil formation by synthetic Max and c-Myc leucine zippers: a description of putative electrostatic interactions responsible for the specificity of heterodimerization. J Mol Biol. 1995 Dec 1;254(3):505–520. doi: 10.1006/jmbi.1995.0634. [DOI] [PubMed] [Google Scholar]
  39. Lee K. H., Xie D., Freire E., Amzel L. M. Estimation of changes in side chain configurational entropy in binding and folding: general methods and application to helix formation. Proteins. 1994 Sep;20(1):68–84. doi: 10.1002/prot.340200108. [DOI] [PubMed] [Google Scholar]
  40. Lovejoy B., Choe S., Cascio D., McRorie D. K., DeGrado W. F., Eisenberg D. Crystal structure of a synthetic triple-stranded alpha-helical bundle. Science. 1993 Feb 26;259(5099):1288–1293. doi: 10.1126/science.8446897. [DOI] [PubMed] [Google Scholar]
  41. Lumb K. J., Kim P. S. A buried polar interaction imparts structural uniqueness in a designed heterodimeric coiled coil. Biochemistry. 1995 Jul 11;34(27):8642–8648. doi: 10.1021/bi00027a013. [DOI] [PubMed] [Google Scholar]
  42. Lupas A. Coiled coils: new structures and new functions. Trends Biochem Sci. 1996 Oct;21(10):375–382. [PubMed] [Google Scholar]
  43. Lupas A. Predicting coiled-coil regions in proteins. Curr Opin Struct Biol. 1997 Jun;7(3):388–393. doi: 10.1016/s0959-440x(97)80056-5. [DOI] [PubMed] [Google Scholar]
  44. Lupas A., Van Dyke M., Stock J. Predicting coiled coils from protein sequences. Science. 1991 May 24;252(5009):1162–1164. doi: 10.1126/science.252.5009.1162. [DOI] [PubMed] [Google Scholar]
  45. Matthews B. W. Structural and genetic analysis of protein stability. Annu Rev Biochem. 1993;62:139–160. doi: 10.1146/annurev.bi.62.070193.001035. [DOI] [PubMed] [Google Scholar]
  46. Moitra J., Szilák L., Krylov D., Vinson C. Leucine is the most stabilizing aliphatic amino acid in the d position of a dimeric leucine zipper coiled coil. Biochemistry. 1997 Oct 14;36(41):12567–12573. doi: 10.1021/bi971424h. [DOI] [PubMed] [Google Scholar]
  47. Monera O. D., Kay C. M., Hodges R. S. Electrostatic interactions control the parallel and antiparallel orientation of alpha-helical chains in two-stranded alpha-helical coiled-coils. Biochemistry. 1994 Apr 5;33(13):3862–3871. doi: 10.1021/bi00179a010. [DOI] [PubMed] [Google Scholar]
  48. Monera O. D., Kay C. M., Hodges R. S. Protein denaturation with guanidine hydrochloride or urea provides a different estimate of stability depending on the contributions of electrostatic interactions. Protein Sci. 1994 Nov;3(11):1984–1991. doi: 10.1002/pro.5560031110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Monera O. D., Sereda T. J., Zhou N. E., Kay C. M., Hodges R. S. Relationship of sidechain hydrophobicity and alpha-helical propensity on the stability of the single-stranded amphipathic alpha-helix. J Pept Sci. 1995 Sep-Oct;1(5):319–329. doi: 10.1002/psc.310010507. [DOI] [PubMed] [Google Scholar]
  50. Monera O. D., Sönnichsen F. D., Hicks L., Kay C. M., Hodges R. S. The relative positions of alanine residues in the hydrophobic core control the formation of two-stranded or four-stranded alpha-helical coiled-coils. Protein Eng. 1996 Apr;9(4):353–363. doi: 10.1093/protein/9.4.353. [DOI] [PubMed] [Google Scholar]
  51. Monera O. D., Zhou N. E., Kay C. M., Hodges R. S. Comparison of antiparallel and parallel two-stranded alpha-helical coiled-coils. Design, synthesis, and characterization. J Biol Chem. 1993 Sep 15;268(26):19218–19227. [PubMed] [Google Scholar]
  52. Morjana N. A., McKeone B. J., Gilbert H. F. Guanidine hydrochloride stabilization of a partially unfolded intermediate during the reversible denaturation of protein disulfide isomerase. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2107–2111. doi: 10.1073/pnas.90.6.2107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Muhle-Goll C., Gibson T., Schuck P., Schubert D., Nalis D., Nilges M., Pastore A. The dimerization stability of the HLH-LZ transcription protein family is modulated by the leucine zippers: a CD and NMR study of TFEB and c-Myc. Biochemistry. 1994 Sep 20;33(37):11296–11306. doi: 10.1021/bi00203a027. [DOI] [PubMed] [Google Scholar]
  54. Muñoz V., Serrano L. Local versus nonlocal interactions in protein folding and stability--an experimentalist's point of view. Fold Des. 1996;1(4):R71–R77. doi: 10.1016/S1359-0278(96)00036-3. [DOI] [PubMed] [Google Scholar]
  55. Myers J. K., Pace C. N., Scholtz J. M. Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci. 1995 Oct;4(10):2138–2148. doi: 10.1002/pro.5560041020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  57. O'Shea E. K., Klemm J. D., Kim P. S., Alber T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science. 1991 Oct 25;254(5031):539–544. doi: 10.1126/science.1948029. [DOI] [PubMed] [Google Scholar]
  58. O'Shea E. K., Rutkowski R., Kim P. S. Evidence that the leucine zipper is a coiled coil. Science. 1989 Jan 27;243(4890):538–542. doi: 10.1126/science.2911757. [DOI] [PubMed] [Google Scholar]
  59. Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
  60. Richards F. M., Lim W. A. An analysis of packing in the protein folding problem. Q Rev Biophys. 1993 Nov;26(4):423–498. doi: 10.1017/s0033583500002845. [DOI] [PubMed] [Google Scholar]
  61. Sali D., Bycroft M., Fersht A. R. Surface electrostatic interactions contribute little of stability of barnase. J Mol Biol. 1991 Aug 5;220(3):779–788. doi: 10.1016/0022-2836(91)90117-o. [DOI] [PubMed] [Google Scholar]
  62. Su J. Y., Hodges R. S., Kay C. M. Effect of chain length on the formation and stability of synthetic alpha-helical coiled coils. Biochemistry. 1994 Dec 27;33(51):15501–15510. doi: 10.1021/bi00255a032. [DOI] [PubMed] [Google Scholar]
  63. Sönnichsen F. D., Van Eyk J. E., Hodges R. S., Sykes B. D. Effect of trifluoroethanol on protein secondary structure: an NMR and CD study using a synthetic actin peptide. Biochemistry. 1992 Sep 22;31(37):8790–8798. doi: 10.1021/bi00152a015. [DOI] [PubMed] [Google Scholar]
  64. Thompson K. S., Vinson C. R., Freire E. Thermodynamic characterization of the structural stability of the coiled-coil region of the bZIP transcription factor GCN4. Biochemistry. 1993 Jun 1;32(21):5491–5496. doi: 10.1021/bi00072a001. [DOI] [PubMed] [Google Scholar]
  65. Tripet B., Vale R. D., Hodges R. S. Demonstration of coiled-coil interactions within the kinesin neck region using synthetic peptides. Implications for motor activity. J Biol Chem. 1997 Apr 4;272(14):8946–8956. doi: 10.1074/jbc.272.14.8946. [DOI] [PubMed] [Google Scholar]
  66. Wagschal K., Tripet B., Hodges R. S. De novo design of a model peptide sequence to examine the effects of single amino acid substitutions in the hydrophobic core on both stability and oligomerization state of coiled-coils. J Mol Biol. 1999 Jan 15;285(2):785–803. doi: 10.1006/jmbi.1998.2284. [DOI] [PubMed] [Google Scholar]
  67. Weissenhorn W., Dessen A., Harrison S. C., Skehel J. J., Wiley D. C. Atomic structure of the ectodomain from HIV-1 gp41. Nature. 1997 May 22;387(6631):426–430. doi: 10.1038/387426a0. [DOI] [PubMed] [Google Scholar]
  68. Wishart D. S., Boyko R. F., Willard L., Richards F. M., Sykes B. D. SEQSEE: a comprehensive program suite for protein sequence analysis. Comput Appl Biosci. 1994 Apr;10(2):121–132. doi: 10.1093/bioinformatics/10.2.121. [DOI] [PubMed] [Google Scholar]
  69. Wolf E., Kim P. S., Berger B. MultiCoil: a program for predicting two- and three-stranded coiled coils. Protein Sci. 1997 Jun;6(6):1179–1189. doi: 10.1002/pro.5560060606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Woolfson D. N., Alber T. Predicting oligomerization states of coiled coils. Protein Sci. 1995 Aug;4(8):1596–1607. doi: 10.1002/pro.5560040818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Zeng X., Zhu H., Lashuel H. A., Hu J. C. Oligomerization properties of GCN4 leucine zipper e and g position mutants. Protein Sci. 1997 Oct;6(10):2218–2226. doi: 10.1002/pro.5560061016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Zhou N. E., Kay C. M., Hodges R. S. Synthetic model proteins. Positional effects of interchain hydrophobic interactions on stability of two-stranded alpha-helical coiled-coils. J Biol Chem. 1992 Feb 5;267(4):2664–2670. [PubMed] [Google Scholar]
  73. Zhou N. E., Kay C. M., Hodges R. S. Synthetic model proteins: the relative contribution of leucine residues at the nonequivalent positions of the 3-4 hydrophobic repeat to the stability of the two-stranded alpha-helical coiled-coil. Biochemistry. 1992 Jun 30;31(25):5739–5746. doi: 10.1021/bi00140a008. [DOI] [PubMed] [Google Scholar]
  74. Zhou N. E., Mant C. T., Hodges R. S. Effect of preferred binding domains on peptide retention behavior in reversed-phase chromatography: amphipathic alpha-helices. Pept Res. 1990 Jan-Feb;3(1):8–20. [PubMed] [Google Scholar]
  75. Zhu B. Y., Zhou N. E., Kay C. M., Hodges R. S. Packing and hydrophobicity effects on protein folding and stability: effects of beta-branched amino acids, valine and isoleucine, on the formation and stability of two-stranded alpha-helical coiled coils/leucine zippers. Protein Sci. 1993 Mar;2(3):383–394. doi: 10.1002/pro.5560020310. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES