Abstract
The crystal structure of the Escherichia coli enoyl reductase-NAD+-triclosan complex has been determined at 2.5 A resolution. The Ile192-Ser198 loop is either disordered or in an open conformation in the previously reported structures of the enzyme. This loop adopts a closed conformation in our structure, forming van der Waals interactions with the inhibitor and hydrogen bonds with the bound NAD+ cofactor. The opening and closing of this flipping loop is likely an important factor in substrate or ligand recognition. The closed conformation of the loop appears to be a critical feature for the enhanced binding potency of triclosan, and a key component in future structure-based inhibitor design.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baldock C., Rafferty J. B., Sedelnikova S. E., Baker P. J., Stuitje A. R., Slabas A. R., Hawkes T. R., Rice D. W. A mechanism of drug action revealed by structural studies of enoyl reductase. Science. 1996 Dec 20;274(5295):2107–2110. doi: 10.1126/science.274.5295.2107. [DOI] [PubMed] [Google Scholar]
- Baldock C., Rafferty J. B., Stuitje A. R., Slabas A. R., Rice D. W. The X-ray structure of Escherichia coli enoyl reductase with bound NAD+ at 2.1 A resolution. J Mol Biol. 1998 Dec 18;284(5):1529–1546. doi: 10.1006/jmbi.1998.2271. [DOI] [PubMed] [Google Scholar]
- Bhargava H. N., Leonard P. A. Triclosan: applications and safety. Am J Infect Control. 1996 Jun;24(3):209–218. doi: 10.1016/s0196-6553(96)90017-6. [DOI] [PubMed] [Google Scholar]
- Dessen A., Quémard A., Blanchard J. S., Jacobs W. R., Jr, Sacchettini J. C. Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis. Science. 1995 Mar 17;267(5204):1638–1641. doi: 10.1126/science.7886450. [DOI] [PubMed] [Google Scholar]
- Grassberger M. A., Turnowsky F., Hildebrandt J. Preparation and antibacterial activities of new 1,2,3-diazaborine derivatives and analogues. J Med Chem. 1984 Aug;27(8):947–953. doi: 10.1021/jm00374a003. [DOI] [PubMed] [Google Scholar]
- Heath R. J., Rock C. O. Enoyl-acyl carrier protein reductase (fabI) plays a determinant role in completing cycles of fatty acid elongation in Escherichia coli. J Biol Chem. 1995 Nov 3;270(44):26538–26542. doi: 10.1074/jbc.270.44.26538. [DOI] [PubMed] [Google Scholar]
- Heath R. J., Rubin J. R., Holland D. R., Zhang E., Snow M. E., Rock C. O. Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J Biol Chem. 1999 Apr 16;274(16):11110–11114. doi: 10.1074/jbc.274.16.11110. [DOI] [PubMed] [Google Scholar]
- Hol W. G., van Duijnen P. T., Berendsen H. J. The alpha-helix dipole and the properties of proteins. Nature. 1978 Jun 8;273(5662):443–446. doi: 10.1038/273443a0. [DOI] [PubMed] [Google Scholar]
- Levy C. W., Roujeinikova A., Sedelnikova S., Baker P. J., Stuitje A. R., Slabas A. R., Rice D. W., Rafferty J. B. Molecular basis of triclosan activity. Nature. 1999 Apr 1;398(6726):383–384. doi: 10.1038/18803. [DOI] [PubMed] [Google Scholar]
- McMurry L. M., McDermott P. F., Levy S. B. Genetic evidence that InhA of Mycobacterium smegmatis is a target for triclosan. Antimicrob Agents Chemother. 1999 Mar;43(3):711–713. doi: 10.1128/aac.43.3.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McMurry L. M., Oethinger M., Levy S. B. Triclosan targets lipid synthesis. Nature. 1998 Aug 6;394(6693):531–532. doi: 10.1038/28970. [DOI] [PubMed] [Google Scholar]
- Mdluli K., Slayden R. A., Zhu Y., Ramaswamy S., Pan X., Mead D., Crane D. D., Musser J. M., Barry C. E., 3rd Inhibition of a Mycobacterium tuberculosis beta-ketoacyl ACP synthase by isoniazid. Science. 1998 Jun 5;280(5369):1607–1610. doi: 10.1126/science.280.5369.1607. [DOI] [PubMed] [Google Scholar]
- Rafferty J. B., Fisher M., Langridge S. J., Martindale W., Thomas N. C., Simon J. W., Bithell S., Slabas A. R., Rice D. W. Crystallization of the NADP-dependent beta-keto acyl carrier protein reductase from Escherichia coli. Acta Crystallogr D Biol Crystallogr. 1998 May 1;54(Pt 3):427–429. doi: 10.1107/s0907444997013668. [DOI] [PubMed] [Google Scholar]
- Rafferty J. B., Simon J. W., Baldock C., Artymiuk P. J., Baker P. J., Stuitje A. R., Slabas A. R., Rice D. W. Common themes in redox chemistry emerge from the X-ray structure of oilseed rape (Brassica napus) enoyl acyl carrier protein reductase. Structure. 1995 Sep 15;3(9):927–938. doi: 10.1016/S0969-2126(01)00227-1. [DOI] [PubMed] [Google Scholar]
- Rozwarski D. A., Grant G. A., Barton D. H., Jacobs W. R., Jr, Sacchettini J. C. Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science. 1998 Jan 2;279(5347):98–102. doi: 10.1126/science.279.5347.98. [DOI] [PubMed] [Google Scholar]
