Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Nov;8(11):2251–2257. doi: 10.1110/ps.8.11.2251

Folding of an isolated ribonuclease H core fragment.

A K Chamberlain 1, K F Fischer 1, D Reardon 1, T M Handel 1, A S Marqusee 1
PMCID: PMC2144208  PMID: 10595528

Abstract

Based on results from both equilibrium and kinetic hydrogen exchange studies of Escherichia coli ribonuclease HI (RNase H), a fragment of RNase H (eABCD) was designed. The sequence of eABCD contains less than half of the protein's primary sequence and includes the regions that were shown to be the most protected from hydrogen exchange in all previous studies of RNase H. This core fragment of RNase H encodes a well-ordered protein with native-like properties. When isolated from the full-length monomeric protein, the eABCD fragment forms a stable dimer. However, we show indirectly that the monomeric form of eABCD is folded and has an overall secondary structure similar to the dimeric form.

Full Text

The Full Text of this article is available as a PDF (317.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azuaga A. I., Conejero-Lara F., Rivas G., De Filippis V., Fontana A., Mateo P. L. The thermodynamics of association and unfolding of the 205-316 C-terminal fragment of thermolysin. Biochim Biophys Acta. 1995 Sep 27;1252(1):95–102. doi: 10.1016/0167-4838(95)00129-i. [DOI] [PubMed] [Google Scholar]
  2. Bai Y., Milne J. S., Mayne L., Englander S. W. Primary structure effects on peptide group hydrogen exchange. Proteins. 1993 Sep;17(1):75–86. doi: 10.1002/prot.340170110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bennett M. J., Schlunegger M. P., Eisenberg D. 3D domain swapping: a mechanism for oligomer assembly. Protein Sci. 1995 Dec;4(12):2455–2468. doi: 10.1002/pro.5560041202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bowie J. U., Sauer R. T. Equilibrium dissociation and unfolding of the Arc repressor dimer. Biochemistry. 1989 Sep 5;28(18):7139–7143. doi: 10.1021/bi00444a001. [DOI] [PubMed] [Google Scholar]
  5. Brown J. E., Klee W. A. Conformational studies of a series of overlapping peptides from ribonuclease and their relationship to the protein structure. Biochemistry. 1969 Jul;8(7):2876–2879. doi: 10.1021/bi00835a027. [DOI] [PubMed] [Google Scholar]
  6. Chamberlain A. K., Handel T. M., Marqusee S. Detection of rare partially folded molecules in equilibrium with the native conformation of RNaseH. Nat Struct Biol. 1996 Sep;3(9):782–787. doi: 10.1038/nsb0996-782. [DOI] [PubMed] [Google Scholar]
  7. Chen H., Hughes D. D., Chan T. A., Sedat J. W., Agard D. A. IVE (Image Visualization Environment): a software platform for all three-dimensional microscopy applications. J Struct Biol. 1996 Jan-Feb;116(1):56–60. doi: 10.1006/jsbi.1996.0010. [DOI] [PubMed] [Google Scholar]
  8. Conejero-Lara F., Mateo P. L. Presence of a slow dimerization equilibrium on the thermal unfolding of the 205-316 thermolysin fragment at neutral pH. Biochemistry. 1996 Mar 19;35(11):3477–3486. doi: 10.1021/bi952358r. [DOI] [PubMed] [Google Scholar]
  9. Constans A. J., Mayer M. R., Sukits S. F., Lecomte J. T. A test of the relationship between sequence and structure in proteins: excision of the heme binding site in apocytochrome b5. Protein Sci. 1998 Sep;7(9):1983–1993. doi: 10.1002/pro.5560070914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dabora J. M., Marqusee S. Equilibrium unfolding of Escherichia coli ribonuclease H: characterization of a partially folded state. Protein Sci. 1994 Sep;3(9):1401–1408. doi: 10.1002/pro.5560030906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dabora J. M., Pelton J. G., Marqusee S. Structure of the acid state of Escherichia coli ribonuclease HI. Biochemistry. 1996 Sep 17;35(37):11951–11958. doi: 10.1021/bi9611671. [DOI] [PubMed] [Google Scholar]
  12. De Sanctis G., Ascoli F., Brunori M. Folding of apominimyoglobin. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11507–11511. doi: 10.1073/pnas.91.24.11507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Edelhoch H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry. 1967 Jul;6(7):1948–1954. doi: 10.1021/bi00859a010. [DOI] [PubMed] [Google Scholar]
  14. Englander S. W., Sosnick T. R., Englander J. J., Mayne L. Mechanisms and uses of hydrogen exchange. Curr Opin Struct Biol. 1996 Feb;6(1):18–23. doi: 10.1016/s0959-440x(96)80090-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gegg C. V., Bowers K. E., Matthews C. R. Probing minimal independent folding units in dihydrofolate reductase by molecular dissection. Protein Sci. 1997 Sep;6(9):1885–1892. doi: 10.1002/pro.5560060909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Goedken E. R., Raschke T. M., Marqusee S. Importance of the C-terminal helix to the stability and enzymatic activity of Escherichia coli ribonuclease H. Biochemistry. 1997 Jun 10;36(23):7256–7263. doi: 10.1021/bi970060q. [DOI] [PubMed] [Google Scholar]
  17. Katayanagi K., Miyagawa M., Matsushima M., Ishikawa M., Kanaya S., Nakamura H., Ikehara M., Matsuzaki T., Morikawa K. Structural details of ribonuclease H from Escherichia coli as refined to an atomic resolution. J Mol Biol. 1992 Feb 20;223(4):1029–1052. doi: 10.1016/0022-2836(92)90260-q. [DOI] [PubMed] [Google Scholar]
  18. Llinás M., Marqusee S. Subdomain interactions as a determinant in the folding and stability of T4 lysozyme. Protein Sci. 1998 Jan;7(1):96–104. doi: 10.1002/pro.5560070110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McKnight C. J., Matsudaira P. T., Kim P. S. NMR structure of the 35-residue villin headpiece subdomain. Nat Struct Biol. 1997 Mar;4(3):180–184. doi: 10.1038/nsb0397-180. [DOI] [PubMed] [Google Scholar]
  20. Oas T. G., Kim P. S. A peptide model of a protein folding intermediate. Nature. 1988 Nov 3;336(6194):42–48. doi: 10.1038/336042a0. [DOI] [PubMed] [Google Scholar]
  21. Peng Z. Y., Kim P. S. A protein dissection study of a molten globule. Biochemistry. 1994 Mar 1;33(8):2136–2141. doi: 10.1021/bi00174a021. [DOI] [PubMed] [Google Scholar]
  22. Raschke T. M., Marqusee S. The kinetic folding intermediate of ribonuclease H resembles the acid molten globule and partially unfolded molecules detected under native conditions. Nat Struct Biol. 1997 Apr;4(4):298–304. doi: 10.1038/nsb0497-298. [DOI] [PubMed] [Google Scholar]
  23. Rico M., Jiménez M. A., González C., De Filippis V., Fontana A. NMR solution structure of the C-terminal fragment 255-316 of thermolysin: a dimer formed by subunits having the native structure. Biochemistry. 1994 Dec 13;33(49):14834–14847. doi: 10.1021/bi00253a023. [DOI] [PubMed] [Google Scholar]
  24. Santoro M. M., Bolen D. W. Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry. 1988 Oct 18;27(21):8063–8068. doi: 10.1021/bi00421a014. [DOI] [PubMed] [Google Scholar]
  25. Schlunegger M. P., Bennett M. J., Eisenberg D. Oligomer formation by 3D domain swapping: a model for protein assembly and misassembly. Adv Protein Chem. 1997;50:61–122. doi: 10.1016/s0065-3233(08)60319-8. [DOI] [PubMed] [Google Scholar]
  26. Staley J. P., Kim P. S. Role of a subdomain in the folding of bovine pancreatic trypsin inhibitor. Nature. 1990 Apr 12;344(6267):685–688. doi: 10.1038/344685a0. [DOI] [PubMed] [Google Scholar]
  27. Taniuchi H., Anfinsen C. B. An experimental approach to the study of the folding of staphylococcal nuclease. J Biol Chem. 1969 Jul 25;244(14):3864–3875. [PubMed] [Google Scholar]
  28. Tasayco M. L., Carey J. Ordered self-assembly of polypeptide fragments to form nativelike dimeric trp repressor. Science. 1992 Jan 31;255(5044):594–597. doi: 10.1126/science.1736361. [DOI] [PubMed] [Google Scholar]
  29. Tasayco M. L., Chao K. NMR study of the reconstitution of the beta-sheet of thioredoxin by fragment complementation. Proteins. 1995 May;22(1):41–44. doi: 10.1002/prot.340220106. [DOI] [PubMed] [Google Scholar]
  30. Wishart D. S., Sykes B. D. The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR. 1994 Mar;4(2):171–180. doi: 10.1007/BF00175245. [DOI] [PubMed] [Google Scholar]
  31. Yang J. J., Pikeathly M., Radford S. E. Far-UV circular dichroism reveals a conformational switch in a peptide fragment from the beta-sheet of hen lysozyme. Biochemistry. 1994 Jun 14;33(23):7345–7353. doi: 10.1021/bi00189a040. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES