Abstract
Beta-lactamases are the major resistance mechanism to beta-lactam antibiotics and pose a growing threat to public health. Recently, bacteria have become resistant to beta-lactamase inhibitors, making this problem pressing. In an effort to overcome this resistance, non-beta-lactam inhibitors of beta-lactamases were investigated for complementarity to the structure of AmpC beta-lactamase from Escherichia coli. This led to the discovery of an inhibitor, benzo(b)thiophene-2-boronic acid (BZBTH2B), which inhibited AmpC with a Ki of 27 nM. This inhibitor is chemically dissimilar to beta-lactams, raising the question of what specific interactions are responsible for its activity. To answer this question, the X-ray crystallographic structure of BZBTH2B in complex with AmpC was determined to 2.25 A resolution. The structure reveals several unexpected interactions. The inhibitor appears to complement the conserved, R1-amide binding region of AmpC, despite lacking an amide group. Interactions between one of the boronic acid oxygen atoms, Tyr150, and an ordered water molecule suggest a mechanism for acid/base catalysis and a direction for hydrolytic attack in the enzyme catalyzed reaction. To investigate how a non-beta-lactam inhibitor would perform against resistant bacteria, BZBTH2B was tested in antimicrobial assays. BZBTH2B significantly potentiated the activity of a third-generation cephalosporin against AmpC-producing resistant bacteria. This inhibitor was unaffected by two common resistance mechanisms that often arise against beta-lactams in conjunction with beta-lactamases. Porin channel mutations did not decrease the efficacy of BZBTH2B against cells expressing AmpC. Also, this inhibitor did not induce expression of AmpC, a problem with many beta-lactams. The structure of the BZBTH2B/AmpC complex provides a starting point for the structure-based elaboration of this class of non-beta-lactam inhibitors.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beesley T., Gascoyne N., Knott-Hunziker V., Petursson S., Waley S. G., Jaurin B., Grundström T. The inhibition of class C beta-lactamases by boronic acids. Biochem J. 1983 Jan 1;209(1):229–233. doi: 10.1042/bj2090229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett P. M., Chopra I. Molecular basis of beta-lactamase induction in bacteria. Antimicrob Agents Chemother. 1993 Feb;37(2):153–158. doi: 10.1128/aac.37.2.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bush K., Jacoby G. A., Medeiros A. A. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995 Jun;39(6):1211–1233. doi: 10.1128/aac.39.6.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bush K. The evolution of beta-lactamases. Ciba Found Symp. 1997;207:152–166. [PubMed] [Google Scholar]
- Casadaban M. J. Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J Mol Biol. 1976 Jul 5;104(3):541–555. doi: 10.1016/0022-2836(76)90119-4. [DOI] [PubMed] [Google Scholar]
- Chen C. C., Rahil J., Pratt R. F., Herzberg O. Structure of a phosphonate-inhibited beta-lactamase. An analog of the tetrahedral transition state/intermediate of beta-lactam hydrolysis. J Mol Biol. 1993 Nov 5;234(1):165–178. doi: 10.1006/jmbi.1993.1571. [DOI] [PubMed] [Google Scholar]
- Davies J. Inactivation of antibiotics and the dissemination of resistance genes. Science. 1994 Apr 15;264(5157):375–382. doi: 10.1126/science.8153624. [DOI] [PubMed] [Google Scholar]
- Dubus A., Ledent P., Lamotte-Brasseur J., Frère J. M. The roles of residues Tyr150, Glu272, and His314 in class C beta-lactamases. Proteins. 1996 Aug;25(4):473–485. doi: 10.1002/prot.7. [DOI] [PubMed] [Google Scholar]
- Dubus A., Normark S., Kania M., Page M. G. The role of tyrosine 150 in catalysis of beta-lactam hydrolysis by AmpC beta-lactamase from Escherichia coli investigated by site-directed mutagenesis. Biochemistry. 1994 Jul 19;33(28):8577–8586. doi: 10.1021/bi00194a024. [DOI] [PubMed] [Google Scholar]
- Esnouf R. M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J Mol Graph Model. 1997 Apr;15(2):132-4, 112-3. doi: 10.1016/S1093-3263(97)00021-1. [DOI] [PubMed] [Google Scholar]
- Gonzalez Leiza M., Perez-Diaz J. C., Ayala J., Casellas J. M., Martinez-Beltran J., Bush K., Baquero F. Gene sequence and biochemical characterization of FOX-1 from Klebsiella pneumoniae, a new AmpC-type plasmid-mediated beta-lactamase with two molecular variants. Antimicrob Agents Chemother. 1994 Sep;38(9):2150–2157. doi: 10.1128/aac.38.9.2150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall M. N., Silhavy T. J. The ompB locus and the regulation of the major outer membrane porin proteins of Escherichia coli K12. J Mol Biol. 1981 Feb 15;146(1):23–43. doi: 10.1016/0022-2836(81)90364-8. [DOI] [PubMed] [Google Scholar]
- Hall M. N., Silhavy T. J. Transcriptional regulation of Escherichia coli K-12 major outer membrane protein 1b. J Bacteriol. 1979 Nov;140(2):342–350. doi: 10.1128/jb.140.2.342-350.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobs C., Frère J. M., Normark S. Cytosolic intermediates for cell wall biosynthesis and degradation control inducible beta-lactam resistance in gram-negative bacteria. Cell. 1997 Mar 21;88(6):823–832. doi: 10.1016/s0092-8674(00)81928-5. [DOI] [PubMed] [Google Scholar]
- Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
- Kadima T. A., Weiner J. H. Mechanism of suppression of piperacillin resistance in enterobacteria by tazobactam. Antimicrob Agents Chemother. 1997 Oct;41(10):2177–2183. doi: 10.1128/aac.41.10.2177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koeck J. L., Arlet G., Philippon A., Basmaciogullari S., Thien H. V., Buisson Y., Cavallo J. D. A plasmid-mediated CMY-2 beta-lactamase from an Algerian clinical isolate of Salmonella senftenberg. FEMS Microbiol Lett. 1997 Jul 15;152(2):255–260. doi: 10.1111/j.1574-6968.1997.tb10436.x. [DOI] [PubMed] [Google Scholar]
- Kuzin A. P., Liu H., Kelly J. A., Knox J. R. Binding of cephalothin and cefotaxime to D-ala-D-ala-peptidase reveals a functional basis of a natural mutation in a low-affinity penicillin-binding protein and in extended-spectrum beta-lactamases. Biochemistry. 1995 Jul 25;34(29):9532–9540. doi: 10.1021/bi00029a030. [DOI] [PubMed] [Google Scholar]
- Lobkovsky E., Billings E. M., Moews P. C., Rahil J., Pratt R. F., Knox J. R. Crystallographic structure of a phosphonate derivative of the Enterobacter cloacae P99 cephalosporinase: mechanistic interpretation of a beta-lactamase transition-state analog. Biochemistry. 1994 Jun 7;33(22):6762–6772. doi: 10.1021/bi00188a004. [DOI] [PubMed] [Google Scholar]
- Lobkovsky E., Moews P. C., Liu H., Zhao H., Frere J. M., Knox J. R. Evolution of an enzyme activity: crystallographic structure at 2-A resolution of cephalosporinase from the ampC gene of Enterobacter cloacae P99 and comparison with a class A penicillinase. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11257–11261. doi: 10.1073/pnas.90.23.11257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Massova I., Mobashery S. Kinship and diversification of bacterial penicillin-binding proteins and beta-lactamases. Antimicrob Agents Chemother. 1998 Jan;42(1):1–17. doi: 10.1128/aac.42.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morosini M. I., Negri M. C., Shoichet B., Baquero M. R., Baquero F., Blázquez J. An extended-spectrum AmpC-type beta-lactamase obtained by in vitro antibiotic selection. FEMS Microbiol Lett. 1998 Aug 1;165(1):85–90. doi: 10.1111/j.1574-6968.1998.tb13131.x. [DOI] [PubMed] [Google Scholar]
- Neu H. C. The crisis in antibiotic resistance. Science. 1992 Aug 21;257(5073):1064–1073. doi: 10.1126/science.257.5073.1064. [DOI] [PubMed] [Google Scholar]
- Nukaga M., Haruta S., Tanimoto K., Kogure K., Taniguchi K., Tamaki M., Sawai T. Molecular evolution of a class C beta-lactamase extending its substrate specificity. J Biol Chem. 1995 Mar 17;270(11):5729–5735. doi: 10.1074/jbc.270.11.5729. [DOI] [PubMed] [Google Scholar]
- Oefner C., D'Arcy A., Daly J. J., Gubernator K., Charnas R. L., Heinze I., Hubschwerlen C., Winkler F. K. Refined crystal structure of beta-lactamase from Citrobacter freundii indicates a mechanism for beta-lactam hydrolysis. Nature. 1990 Jan 18;343(6255):284–288. doi: 10.1038/343284a0. [DOI] [PubMed] [Google Scholar]
- Sanders C. C., Bradford P. A., Ehrhardt A. F., Bush K., Young K. D., Henderson T. A., Sanders W. E., Jr Penicillin-binding proteins and induction of AmpC beta-lactamase. Antimicrob Agents Chemother. 1997 Sep;41(9):2013–2015. doi: 10.1128/aac.41.9.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanders C. C. beta-Lactamases of gram-negative bacteria: new challenges for new drugs. Clin Infect Dis. 1992 May;14(5):1089–1099. doi: 10.1093/clinids/14.5.1089. [DOI] [PubMed] [Google Scholar]
- Strynadka N. C., Adachi H., Jensen S. E., Johns K., Sielecki A., Betzel C., Sutoh K., James M. N. Molecular structure of the acyl-enzyme intermediate in beta-lactam hydrolysis at 1.7 A resolution. Nature. 1992 Oct 22;359(6397):700–705. doi: 10.1038/359700a0. [DOI] [PubMed] [Google Scholar]
- Strynadka N. C., Martin R., Jensen S. E., Gold M., Jones J. B. Structure-based design of a potent transition state analogue for TEM-1 beta-lactamase. Nat Struct Biol. 1996 Aug;3(8):688–695. doi: 10.1038/nsb0896-688. [DOI] [PubMed] [Google Scholar]
- Sutherland R. Beta-lactamase inhibitors and reversal of antibiotic resistance. Trends Pharmacol Sci. 1991 Jun;12(6):227–232. doi: 10.1016/0165-6147(91)90557-9. [DOI] [PubMed] [Google Scholar]
- Thornton J. M., Singh J., Campbell S., Blundell T. L. Protein-protein recognition via side-chain interactions. Biochem Soc Trans. 1988 Dec;16(6):927–930. doi: 10.1042/bst0160927. [DOI] [PubMed] [Google Scholar]
- Usher K. C., Blaszczak L. C., Weston G. S., Shoichet B. K., Remington S. J. Three-dimensional structure of AmpC beta-lactamase from Escherichia coli bound to a transition-state analogue: possible implications for the oxyanion hypothesis and for inhibitor design. Biochemistry. 1998 Nov 17;37(46):16082–16092. doi: 10.1021/bi981210f. [DOI] [PubMed] [Google Scholar]
- Weston G. S., Blázquez J., Baquero F., Shoichet B. K. Structure-based enhancement of boronic acid-based inhibitors of AmpC beta-lactamase. J Med Chem. 1998 Nov 5;41(23):4577–4586. doi: 10.1021/jm980343w. [DOI] [PubMed] [Google Scholar]