Abstract
The folding of immunoglobulin domains requires the formation of a conserved structural disulfide. Therefore, as a general rule, they cannot be functionally expressed in the reducing environment of the cellular cytoplasm. We have previously reported that stability engineering can lead to the cytoplasmic expression of functional immunoglobulin V(L) domains. Here we apply rational stability engineering by consensus sequence analysis to V(H) domains. Isolated V(H) domains tend to aggregate more easily than V(L) domains; they do not refold quantitatively and are generally more difficult to handle in vitro. To overcome these problems, we successfully predicted and experimentally verified several stabilizing point mutations in the V(H) domain of a designed, catalytic Fv fragment. The effect of single mutations was additive, and they could be combined in a prototype domain with significantly improved stability against chemical denaturation and a 20-fold increased half time of irreversible thermal denaturation, at physiological temperature. This stabilized, isolated V(H) domain could be expressed solubly in the reducing cellular cytoplasm of Escherichia coli, at a yield of approximately 1.2 mg/L of shake flask culture. It remains fully functional, as evidenced by the successful reconstitution of an esterolytic Fv fragment with the V(L) domain. This success provides further evidence that consensus sequence engineering is a rational, plannable route to the construction of intrabodies.
Full Text
The Full Text of this article is available as a PDF (299.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bothwell A. L., Paskind M., Reth M., Imanishi-Kari T., Rajewsky K., Baltimore D. Heavy chain variable region contribution to the NPb family of antibodies: somatic mutation evident in a gamma 2a variable region. Cell. 1981 Jun;24(3):625–637. doi: 10.1016/0092-8674(81)90089-1. [DOI] [PubMed] [Google Scholar]
- Cattaneo A., Biocca S. The selection of intracellular antibodies. Trends Biotechnol. 1999 Mar;17(3):115–121. doi: 10.1016/s0167-7799(98)01268-2. [DOI] [PubMed] [Google Scholar]
- Davies J., Riechmann L. Single antibody domains as small recognition units: design and in vitro antigen selection of camelized, human VH domains with improved protein stability. Protein Eng. 1996 Jun;9(6):531–537. doi: 10.1093/protein/9.6.531. [DOI] [PubMed] [Google Scholar]
- Gargano N., Cattaneo A. Rescue of a neutralizing anti-viral antibody fragment from an intracellular polyclonal repertoire expressed in mammalian cells. FEBS Lett. 1997 Sep 15;414(3):537–540. doi: 10.1016/s0014-5793(97)01065-x. [DOI] [PubMed] [Google Scholar]
- Glockshuber R., Schmidt T., Plückthun A. The disulfide bonds in antibody variable domains: effects on stability, folding in vitro, and functional expression in Escherichia coli. Biochemistry. 1992 Feb 11;31(5):1270–1279. doi: 10.1021/bi00120a002. [DOI] [PubMed] [Google Scholar]
- Hamers-Casterman C., Atarhouch T., Muyldermans S., Robinson G., Hamers C., Songa E. B., Bendahman N., Hamers R. Naturally occurring antibodies devoid of light chains. Nature. 1993 Jun 3;363(6428):446–448. doi: 10.1038/363446a0. [DOI] [PubMed] [Google Scholar]
- Lauwereys M., Arbabi Ghahroudi M., Desmyter A., Kinne J., Hölzer W., De Genst E., Wyns L., Muyldermans S. Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. EMBO J. 1998 Jul 1;17(13):3512–3520. doi: 10.1093/emboj/17.13.3512. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maciejewski J. P., Weichold F. F., Young N. S., Cara A., Zella D., Reitz M. S., Jr, Gallo R. C. Intracellular expression of antibody fragments directed against HIV reverse transcriptase prevents HIV infection in vitro. Nat Med. 1995 Jul;1(7):667–673. doi: 10.1038/nm0795-667. [DOI] [PubMed] [Google Scholar]
- Marasco W. A. Intrabodies: turning the humoral immune system outside in for intracellular immunization. Gene Ther. 1997 Jan;4(1):11–15. doi: 10.1038/sj.gt.3300346. [DOI] [PubMed] [Google Scholar]
- Martin F., Volpari C., Steinkuhler C., Dimasi N., Brunetti M., Biasiol G., Altamura S., Cortese R., De Francesco R., Sollazzo M. Affinity selection of a camelized V(H) domain antibody inhibitor of hepatitis C virus NS3 protease. Protein Eng. 1997 May;10(5):607–614. doi: 10.1093/protein/10.5.607. [DOI] [PubMed] [Google Scholar]
- Martineau P., Jones P., Winter G. Expression of an antibody fragment at high levels in the bacterial cytoplasm. J Mol Biol. 1998 Jul 3;280(1):117–127. doi: 10.1006/jmbi.1998.1840. [DOI] [PubMed] [Google Scholar]
- Ohage E. C., Wirtz P., Barnikow J., Steipe B. Intrabody construction and expression. II. A synthetic catalytic Fv fragment. J Mol Biol. 1999 Sep 3;291(5):1129–1134. doi: 10.1006/jmbi.1999.3020. [DOI] [PubMed] [Google Scholar]
- Ohage E., Steipe B. Intrabody construction and expression. I. The critical role of VL domain stability. J Mol Biol. 1999 Sep 3;291(5):1119–1128. doi: 10.1006/jmbi.1999.3019. [DOI] [PubMed] [Google Scholar]
- Pace C. N., Grimsley G. R., Thomson J. A., Barnett B. J. Conformational stability and activity of ribonuclease T1 with zero, one, and two intact disulfide bonds. J Biol Chem. 1988 Aug 25;263(24):11820–11825. [PubMed] [Google Scholar]
- Proba K., Ge L., Plückthun A. Functional antibody single-chain fragments from the cytoplasm of Escherichia coli: influence of thioredoxin reductase (TrxB). Gene. 1995 Jul 4;159(2):203–207. doi: 10.1016/0378-1119(95)00018-2. [DOI] [PubMed] [Google Scholar]
- Proba K., Wörn A., Honegger A., Plückthun A. Antibody scFv fragments without disulfide bonds made by molecular evolution. J Mol Biol. 1998 Jan 16;275(2):245–253. doi: 10.1006/jmbi.1997.1457. [DOI] [PubMed] [Google Scholar]
- Riechmann L. Rearrangement of the former VL interface in the solution structure of a camelised, single antibody VH domain. J Mol Biol. 1996 Jun 28;259(5):957–969. doi: 10.1006/jmbi.1996.0373. [DOI] [PubMed] [Google Scholar]
- Rondon I. J., Marasco W. A. Intracellular antibodies (intrabodies) for gene therapy of infectious diseases. Annu Rev Microbiol. 1997;51:257–283. doi: 10.1146/annurev.micro.51.1.257. [DOI] [PubMed] [Google Scholar]
- Skerra A., Plückthun A. Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science. 1988 May 20;240(4855):1038–1041. doi: 10.1126/science.3285470. [DOI] [PubMed] [Google Scholar]
- Skerra A. Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in Escherichia coli. Gene. 1994 Dec 30;151(1-2):131–135. doi: 10.1016/0378-1119(94)90643-2. [DOI] [PubMed] [Google Scholar]
- Steipe B., Schiller B., Plückthun A., Steinbacher S. Sequence statistics reliably predict stabilizing mutations in a protein domain. J Mol Biol. 1994 Jul 15;240(3):188–192. doi: 10.1006/jmbi.1994.1434. [DOI] [PubMed] [Google Scholar]
- Ward E. S., Güssow D., Griffiths A. D., Jones P. T., Winter G. Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature. 1989 Oct 12;341(6242):544–546. doi: 10.1038/341544a0. [DOI] [PubMed] [Google Scholar]
- Wu Y., Duan L., Zhu M., Hu B., Kubota S., Bagasra O., Pomerantz R. J. Binding of intracellular anti-Rev single chain variable fragments to different epitopes of human immunodeficiency virus type 1 rev: variations in viral inhibition. J Virol. 1996 May;70(5):3290–3297. doi: 10.1128/jvi.70.5.3290-3297.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou G. W., Guo J., Huang W., Fletterick R. J., Scanlan T. S. Crystal structure of a catalytic antibody with a serine protease active site. Science. 1994 Aug 19;265(5175):1059–1064. doi: 10.1126/science.8066444. [DOI] [PubMed] [Google Scholar]