Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Nov;8(11):2366–2379. doi: 10.1110/ps.8.11.2366

Crystal structure of reduced thioredoxin reductase from Escherichia coli: structural flexibility in the isoalloxazine ring of the flavin adenine dinucleotide cofactor.

B W Lennon 1, C H Williams Jr 1, M L Ludwig 1
PMCID: PMC2144213  PMID: 10595539

Abstract

Catalysis by thioredoxin reductase (TrxR) from Escherichia coli requires alternation between two domain arrangements. One of these conformations has been observed by X-ray crystallography (Waksman G, Krishna TSR, Williams CH Jr, Kuriyan J, 1994, J Mol Biol 236:800-816). This form of TrxR, denoted FO, permits the reaction of enzyme-bound reduced FAD with a redox-active disulfide on TrxR. As part of an investigation of conformational changes and intermediates in catalysis by TrxR, an X-ray structure of the FO form of TrxR with both the FAD and active site disulfide reduced has been determined. Reduction after crystallization resulted in significant local conformation changes. The isoalloxazine ring of the FAD cofactor, which is essentially planar in the oxidized enzyme, assumes a 34 degree "butterfly" bend about the N(5)-N(10) axis in reduced TrxR. Theoretical calculations reported by others predict ring bending of 15-28 degrees for reduced isoalloxazines protonated at N(1). The large bending in reduced TrxR is attributed in part to steric interactions between the isoalloxazine ring and the sulfur of Cys138, formed by reduction of the active site disulfide, and is accompanied by changes in the positions and interactions of several of the ribityl side-chain atoms of FAD. The bending angle in reduced TrxR is larger than that for any flavoprotein in the Protein Data Bank. Distributions of bending angles in published oxidized and reduced flavoenzyme structures are different from those found in studies of free flavins, indicating that the protein environment has a significant effect on bending.

Full Text

The Full Text of this article is available as a PDF (5.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barber M. J., Pollock V., Spence J. T. Microcoulometric analysis of trimethylamine dehydrogenase. Biochem J. 1988 Dec 1;256(2):657–659. doi: 10.1042/bj2560657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beinert W. D., Rüterjans H., Müller F. Nuclear magnetic resonance studies of the old yellow enzyme. 1. 15N NMR of the enzyme recombined with 15N-labeled flavin mononucleotides. Eur J Biochem. 1985 Nov 4;152(3):573–579. doi: 10.1111/j.1432-1033.1985.tb09234.x. [DOI] [PubMed] [Google Scholar]
  3. Bellamy H. D., Lim L. W., Mathews F. S., Dunham W. R. Studies of crystalline trimethylamine dehydrogenase in three oxidation states and in the presence of substrate and inhibitor. J Biol Chem. 1989 Jul 15;264(20):11887–11892. [PubMed] [Google Scholar]
  4. Brünger A. T., Krukowski A., Erickson J. W. Slow-cooling protocols for crystallographic refinement by simulated annealing. Acta Crystallogr A. 1990 Jul 1;46(Pt 7):585–593. doi: 10.1107/s0108767390002355. [DOI] [PubMed] [Google Scholar]
  5. Brünger A. T., Kuriyan J., Karplus M. Crystallographic R factor refinement by molecular dynamics. Science. 1987 Jan 23;235(4787):458–460. doi: 10.1126/science.235.4787.458. [DOI] [PubMed] [Google Scholar]
  6. Dixon D. A., Lindner D. L., Branchaud B., Lipscomb W. N. Conformations and electronic structures of oxidized and reduced isoalloxazine. Biochemistry. 1979 Dec 25;18(26):5770–5775. doi: 10.1021/bi00593a004. [DOI] [PubMed] [Google Scholar]
  7. Fox K. M., Karplus P. A. Old yellow enzyme at 2 A resolution: overall structure, ligand binding, and comparison with related flavoproteins. Structure. 1994 Nov 15;2(11):1089–1105. [PubMed] [Google Scholar]
  8. Ghisla S., Kenney W. C., Knappe W. R., McIntire W., Singer T. P. Chemical synthesis and some properties of 6-substituted flavins. Biochemistry. 1980 Jun 10;19(12):2537–2544. doi: 10.1021/bi00553a001. [DOI] [PubMed] [Google Scholar]
  9. Guddat L. W., Bardwell J. C., Martin J. L. Crystal structures of reduced and oxidized DsbA: investigation of domain motion and thiolate stabilization. Structure. 1998 Jun 15;6(6):757–767. doi: 10.1016/s0969-2126(98)00077-x. [DOI] [PubMed] [Google Scholar]
  10. Hecht H. J., Erdmann H., Park H. J., Sprinzl M., Schmid R. D. Crystal structure of NADH oxidase from Thermus thermophilus. Nat Struct Biol. 1995 Dec;2(12):1109–1114. doi: 10.1038/nsb1295-1109. [DOI] [PubMed] [Google Scholar]
  11. Holmgren A. Thioredoxin. 6. The amino acid sequence of the protein from escherichia coli B. Eur J Biochem. 1968 Dec 5;6(4):475–484. doi: 10.1111/j.1432-1033.1968.tb00470.x. [DOI] [PubMed] [Google Scholar]
  12. Holmgren A. Thioredoxin. Annu Rev Biochem. 1985;54:237–271. doi: 10.1146/annurev.bi.54.070185.001321. [DOI] [PubMed] [Google Scholar]
  13. Jeng M. F., Campbell A. P., Begley T., Holmgren A., Case D. A., Wright P. E., Dyson H. J. High-resolution solution structures of oxidized and reduced Escherichia coli thioredoxin. Structure. 1994 Sep 15;2(9):853–868. doi: 10.1016/s0969-2126(94)00086-7. [DOI] [PubMed] [Google Scholar]
  14. Jeng M. F., Holmgren A., Dyson H. J. Proton sharing between cysteine thiols in Escherichia coli thioredoxin: implications for the mechanism of protein disulfide reduction. Biochemistry. 1995 Aug 15;34(32):10101–10105. doi: 10.1021/bi00032a001. [DOI] [PubMed] [Google Scholar]
  15. Jiang J. S., Brünger A. T. Protein hydration observed by X-ray diffraction. Solvation properties of penicillopepsin and neuraminidase crystal structures. J Mol Biol. 1994 Oct 14;243(1):100–115. doi: 10.1006/jmbi.1994.1633. [DOI] [PubMed] [Google Scholar]
  16. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  17. Karplus P. A., Schulz G. E. Substrate binding and catalysis by glutathione reductase as derived from refined enzyme: substrate crystal structures at 2 A resolution. J Mol Biol. 1989 Nov 5;210(1):163–180. doi: 10.1016/0022-2836(89)90298-2. [DOI] [PubMed] [Google Scholar]
  18. Kuriyan J., Krishna T. S., Wong L., Guenther B., Pahler A., Williams C. H., Jr, Model P. Convergent evolution of similar function in two structurally divergent enzymes. Nature. 1991 Jul 11;352(6331):172–174. doi: 10.1038/352172a0. [DOI] [PubMed] [Google Scholar]
  19. Kuriyan J., Wong L., Russel M., Model P. Crystallization and preliminary x-ray characterization of thioredoxin reductase from Escherichia coli. J Biol Chem. 1989 Aug 5;264(22):12752–12753. [PubMed] [Google Scholar]
  20. Lennon B. W., Williams C. H., Jr Effect of pyridine nucleotide on the oxidative half-reaction of Escherichia coli thioredoxin reductase. Biochemistry. 1995 Mar 21;34(11):3670–3677. doi: 10.1021/bi00011a023. [DOI] [PubMed] [Google Scholar]
  21. Lennon B. W., Williams C. H., Jr Enzyme-monitored turnover of Escherichia coli thioredoxin reductase: insights for catalysis. Biochemistry. 1996 Apr 16;35(15):4704–4712. doi: 10.1021/bi952521i. [DOI] [PubMed] [Google Scholar]
  22. Lennon B. W., Williams C. H., Jr Reductive half-reaction of thioredoxin reductase from Escherichia coli. Biochemistry. 1997 Aug 5;36(31):9464–9477. doi: 10.1021/bi970307j. [DOI] [PubMed] [Google Scholar]
  23. Ludwig M. L., Pattridge K. A., Metzger A. L., Dixon M. M., Eren M., Feng Y., Swenson R. P. Control of oxidation-reduction potentials in flavodoxin from Clostridium beijerinckii: the role of conformation changes. Biochemistry. 1997 Feb 11;36(6):1259–1280. doi: 10.1021/bi962180o. [DOI] [PubMed] [Google Scholar]
  24. MOORE E. C., REICHARD P., THELANDER L. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEOTIDES.V. PURIFICATION AND PROPERTIES OF THIOREDOXIN REDUCTASE FROM ESCHERICHIA COLI B. J Biol Chem. 1964 Oct;239:3445–3452. [PubMed] [Google Scholar]
  25. Miura R., Miyake Y. 13C-NMR studies on the reaction intermediates of porcine kidney D-amino acid oxidase reconstituted with 13C-enriched flavin adenine dinucleotide. J Biochem. 1987 Dec;102(6):1345–1354. doi: 10.1093/oxfordjournals.jbchem.a122180. [DOI] [PubMed] [Google Scholar]
  26. Moonen C. T., Vervoort J., Müller F. Carbon-13 nuclear magnetic resonance study on the dynamics of the conformation of reduced flavin. Biochemistry. 1984 Oct 9;23(21):4868–4872. doi: 10.1021/bi00316a008. [DOI] [PubMed] [Google Scholar]
  27. Moonen C. T., Vervoort J., Müller F. Reinvestigation of the structure of oxidized and reduced flavin: carbon-13 and nitrogen-15 nuclear magnetic resonance study. Biochemistry. 1984 Oct 9;23(21):4859–4867. doi: 10.1021/bi00316a007. [DOI] [PubMed] [Google Scholar]
  28. Muller Y. A., Schumacher G., Rudolph R., Schulz G. E. The refined structures of a stabilized mutant and of wild-type pyruvate oxidase from Lactobacillus plantarum. J Mol Biol. 1994 Apr 1;237(3):315–335. doi: 10.1006/jmbi.1994.1233. [DOI] [PubMed] [Google Scholar]
  29. Mulrooney S. B. Application of a single-plasmid vector for mutagenesis and high-level expression of thioredoxin reductase and its use to examine flavin cofactor incorporation. Protein Expr Purif. 1997 Apr;9(3):372–378. doi: 10.1006/prep.1996.0698. [DOI] [PubMed] [Google Scholar]
  30. Nordstrand K., Aslund F., Meunier S., Holmgren A., Otting G., Berndt K. D. Direct NMR observation of the Cys-14 thiol proton of reduced Escherichia coli glutaredoxin-3 supports the presence of an active site thiol-thiolate hydrogen bond. FEBS Lett. 1999 Apr 23;449(2-3):196–200. doi: 10.1016/s0014-5793(99)00401-9. [DOI] [PubMed] [Google Scholar]
  31. O'Donnell M. E., Williams C. H., Jr Proton stoichiometry in the reduction of the FAD and disulfide of Escherichia coli thioredoxin reductase. Evidence for a base at the active site. J Biol Chem. 1983 Nov 25;258(22):13795–13805. [PubMed] [Google Scholar]
  32. Qin J., Clore G. M., Gronenborn A. M. The high-resolution three-dimensional solution structures of the oxidized and reduced states of human thioredoxin. Structure. 1994 Jun 15;2(6):503–522. doi: 10.1016/s0969-2126(00)00051-4. [DOI] [PubMed] [Google Scholar]
  33. Russel M., Model P. Sequence of thioredoxin reductase from Escherichia coli. Relationship to other flavoprotein disulfide oxidoreductases. J Biol Chem. 1988 Jun 25;263(18):9015–9019. [PubMed] [Google Scholar]
  34. Tanaka N., Ashida T., Sasada Y., Kakudo M. The crystal structure of riboflavin hydrobromide monohydrate. Bull Chem Soc Jpn. 1969 Jun;42(6):1546–1554. doi: 10.1246/bcsj.42.1546. [DOI] [PubMed] [Google Scholar]
  35. Tauscher L., Ghisla S., Hemmerich P. NMR.-Study of nitrogen inversion and conformation of 1,5-dihydro-isoalloxazines ("reduced flavin"). Studies in the flavin series, XIX. Helv Chim Acta. 1973 Mar 14;56(2):630–644. doi: 10.1002/hlca.19730560209. [DOI] [PubMed] [Google Scholar]
  36. Trus B. L., Fritchie C. J., Jr The crystal structure of 10-methylisoalloxazine hydrobromide dihydrate. Acta Crystallogr B. 1969 Sep 15;25(9):1911–1918. doi: 10.1107/s0567740869004900. [DOI] [PubMed] [Google Scholar]
  37. Vervoort J., Müller F., LeGall J., Bacher A., Sedlmaier H. Carbon-13 and nitrogen-15 nuclear-magnetic-resonance investigation on Desulfovibrio vulgaris flavodoxin. Eur J Biochem. 1985 Aug 15;151(1):49–57. doi: 10.1111/j.1432-1033.1985.tb09067.x. [DOI] [PubMed] [Google Scholar]
  38. Vervoort J., Müller F., Mayhew S. G., van den Berg W. A., Moonen C. T., Bacher A. A comparative carbon-13, nitrogen-15, and phosphorus-31 nuclear magnetic resonance study on the flavodoxins from Clostridium MP, Megasphaera elsdenii, and Azotobacter vinelandii. Biochemistry. 1986 Nov 4;25(22):6789–6799. doi: 10.1021/bi00370a010. [DOI] [PubMed] [Google Scholar]
  39. Waksman G., Krishna T. S., Williams C. H., Jr, Kuriyan J. Crystal structure of Escherichia coli thioredoxin reductase refined at 2 A resolution. Implications for a large conformational change during catalysis. J Mol Biol. 1994 Feb 25;236(3):800–816. [PubMed] [Google Scholar]
  40. Weichsel A., Gasdaska J. R., Powis G., Montfort W. R. Crystal structures of reduced, oxidized, and mutated human thioredoxins: evidence for a regulatory homodimer. Structure. 1996 Jun 15;4(6):735–751. doi: 10.1016/s0969-2126(96)00079-2. [DOI] [PubMed] [Google Scholar]
  41. Zanetti G., Williams C. H., Jr Characterization of the active center of thioredoxin reductase. J Biol Chem. 1967 Nov 25;242(22):5232–5236. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES