Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Dec;8(12):2645–2654. doi: 10.1110/ps.8.12.2645

Thermal stability of hydrophobic heme pocket variants of oxidized cytochrome c.

J R Liggins 1, T P Lo 1, G D Brayer 1, B T Nall 1
PMCID: PMC2144223  PMID: 10631980

Abstract

Microcalorimetry has been used to measure the stabilities of mutational variants of yeast iso-1 cytochrome c in which F82 and L85 have been replaced by other hydrophobic amino acids. Specifically, F82 has been replaced by Y and L85 by A. The double mutant F82Y,L85A iso-1 has also been studied, and the mutational perturbations are compared to those for the two single mutants, F82Y iso-1 and L85A iso-1. Results are interpreted in terms of known crystallographic structures. The data show that (1) the destabilization of the mutant proteins is similar in magnitude to that which is theoretically predicted by the more obvious mutation-induced structural effects; (2) the free energy of destabilization of the double mutant, F82Y,L85A iso-1, is less than the sum of those of the two single mutants, almost certainly because, in the double mutant, the -OH group of Y82 is able to protrude into the cavity formed by the L85A substitution. The more favorable structural accommodation of the new -OH group in the double mutant leads to additional stability through (1) further decreases in the volumes of internal cavities and (2) formation of an extra protein-protein hydrogen bond.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becktel W. J., Schellman J. A. Protein stability curves. Biopolymers. 1987 Nov;26(11):1859–1877. doi: 10.1002/bip.360261104. [DOI] [PubMed] [Google Scholar]
  2. Berghuis A. M., Brayer G. D. Oxidation state-dependent conformational changes in cytochrome c. J Mol Biol. 1992 Feb 20;223(4):959–976. doi: 10.1016/0022-2836(92)90255-i. [DOI] [PubMed] [Google Scholar]
  3. Blaber M., Baase W. A., Gassner N., Matthews B. W. Alanine scanning mutagenesis of the alpha-helix 115-123 of phage T4 lysozyme: effects on structure, stability and the binding of solvent. J Mol Biol. 1995 Feb 17;246(2):317–330. doi: 10.1006/jmbi.1994.0087. [DOI] [PubMed] [Google Scholar]
  4. Cohen D. S., Pielak G. J. Stability of yeast iso-1-ferricytochrome c as a function of pH and temperature. Protein Sci. 1994 Aug;3(8):1253–1260. doi: 10.1002/pro.5560030811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Connelly G. P., Bai Y., Jeng M. F., Englander S. W. Isotope effects in peptide group hydrogen exchange. Proteins. 1993 Sep;17(1):87–92. doi: 10.1002/prot.340170111. [DOI] [PubMed] [Google Scholar]
  6. Connelly P., Ghosaini L., Hu C. Q., Kitamura S., Tanaka A., Sturtevant J. M. A differential scanning calorimetric study of the thermal unfolding of seven mutant forms of phage T4 lysozyme. Biochemistry. 1991 Feb 19;30(7):1887–1891. doi: 10.1021/bi00221a022. [DOI] [PubMed] [Google Scholar]
  7. Connolly M. L. Solvent-accessible surfaces of proteins and nucleic acids. Science. 1983 Aug 19;221(4612):709–713. doi: 10.1126/science.6879170. [DOI] [PubMed] [Google Scholar]
  8. Connolly M. L. The molecular surface package. J Mol Graph. 1993 Jun;11(2):139–141. doi: 10.1016/0263-7855(93)87010-3. [DOI] [PubMed] [Google Scholar]
  9. Creamer T. P., Srinivasan R., Rose G. D. Modeling unfolded states of proteins and peptides. II. Backbone solvent accessibility. Biochemistry. 1997 Mar 11;36(10):2832–2835. doi: 10.1021/bi962819o. [DOI] [PubMed] [Google Scholar]
  10. Cutler R. L., Pielak G. J., Mauk A. G., Smith M. Replacement of cysteine-107 of Saccharomyces cerevisiae iso-1-cytochrome c with threonine: improved stability of the mutant protein. Protein Eng. 1987 Feb-Mar;1(2):95–99. doi: 10.1093/protein/1.2.95. [DOI] [PubMed] [Google Scholar]
  11. Doig A. J., Sternberg M. J. Side-chain conformational entropy in protein folding. Protein Sci. 1995 Nov;4(11):2247–2251. doi: 10.1002/pro.5560041101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dunitz J. D. The entropic cost of bound water in crystals and biomolecules. Science. 1994 Apr 29;264(5159):670–670. doi: 10.1126/science.264.5159.670. [DOI] [PubMed] [Google Scholar]
  13. Eisenberg D., McLachlan A. D. Solvation energy in protein folding and binding. Nature. 1986 Jan 16;319(6050):199–203. doi: 10.1038/319199a0. [DOI] [PubMed] [Google Scholar]
  14. Eriksson A. E., Baase W. A., Zhang X. J., Heinz D. W., Blaber M., Baldwin E. P., Matthews B. W. Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science. 1992 Jan 10;255(5041):178–183. doi: 10.1126/science.1553543. [DOI] [PubMed] [Google Scholar]
  15. Green S. M., Shortle D. Patterns of nonadditivity between pairs of stability mutations in staphylococcal nuclease. Biochemistry. 1993 Sep 28;32(38):10131–10139. doi: 10.1021/bi00089a032. [DOI] [PubMed] [Google Scholar]
  16. Hammack B., Godbole S., Bowler B. E. Cytochrome c folding traps are not due solely to histidine-heme ligation: direct demonstration of a role for N-terminal amino group-heme ligation. J Mol Biol. 1998 Feb 6;275(5):719–724. doi: 10.1006/jmbi.1997.1493. [DOI] [PubMed] [Google Scholar]
  17. Hickey D. R., Berghuis A. M., Lafond G., Jaeger J. A., Cardillo T. S., McLendon D., Das G., Sherman F., Brayer G. D., McLendon G. Enhanced thermodynamic stabilities of yeast iso-1-cytochromes c with amino acid replacements at positions 52 and 102. J Biol Chem. 1991 Jun 25;266(18):11686–11694. [PubMed] [Google Scholar]
  18. Hu C. Q., Kitamura S., Tanaka A., Sturtevant J. M. Differential scanning calorimetric study of the thermal unfolding of mutant forms of phage T4 lysozyme. Biochemistry. 1992 Feb 18;31(6):1643–1647. doi: 10.1021/bi00121a009. [DOI] [PubMed] [Google Scholar]
  19. Hu C. Q., Sturtevant J. M., Thomson J. A., Erickson R. E., Pace C. N. Thermodynamics of ribonuclease T1 denaturation. Biochemistry. 1992 May 26;31(20):4876–4882. doi: 10.1021/bi00135a019. [DOI] [PubMed] [Google Scholar]
  20. Karpusas M., Baase W. A., Matsumura M., Matthews B. W. Hydrophobic packing in T4 lysozyme probed by cavity-filling mutants. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8237–8241. doi: 10.1073/pnas.86.21.8237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kitamura S., Sturtevant J. M. A scanning calorimetric study of the thermal denaturation of the lysozyme of phage T4 and the Arg 96----His mutant form thereof. Biochemistry. 1989 May 2;28(9):3788–3792. doi: 10.1021/bi00435a024. [DOI] [PubMed] [Google Scholar]
  22. Liggins J. R., Sherman F., Mathews A. J., Nall B. T. Differential scanning calorimetric study of the thermal unfolding transitions of yeast iso-1 and iso-2 cytochromes c and three composite isozymes. Biochemistry. 1994 Aug 9;33(31):9209–9219. doi: 10.1021/bi00197a024. [DOI] [PubMed] [Google Scholar]
  23. Lim W. A., Sauer R. T. Alternative packing arrangements in the hydrophobic core of lambda repressor. Nature. 1989 May 4;339(6219):31–36. doi: 10.1038/339031a0. [DOI] [PubMed] [Google Scholar]
  24. Lo T. P., Guillemette J. G., Louie G. V., Smith M., Brayer G. D. Structural studies of the roles of residues 82 and 85 at the interactive face of cytochrome c. Biochemistry. 1995 Jan 10;34(1):163–171. doi: 10.1021/bi00001a020. [DOI] [PubMed] [Google Scholar]
  25. Lo T. P., Komar-Panicucci S., Sherman F., McLendon G., Brayer G. D. Structural and functional effects of multiple mutations at distal sites in cytochrome c. Biochemistry. 1995 Apr 18;34(15):5259–5268. doi: 10.1021/bi00015a041. [DOI] [PubMed] [Google Scholar]
  26. Lo T. P., Murphy M. E., Guillemette J. G., Smith M., Brayer G. D. Replacements in a conserved leucine cluster in the hydrophobic heme pocket of cytochrome c. Protein Sci. 1995 Feb;4(2):198–208. doi: 10.1002/pro.5560040207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Louie G. V., Brayer G. D. A polypeptide chain-refolding event occurs in the Gly82 variant of yeast iso-1-cytochrome c. J Mol Biol. 1989 Nov 20;210(2):313–322. doi: 10.1016/0022-2836(89)90333-1. [DOI] [PubMed] [Google Scholar]
  28. Louie G. V., Brayer G. D. High-resolution refinement of yeast iso-1-cytochrome c and comparisons with other eukaryotic cytochromes c. J Mol Biol. 1990 Jul 20;214(2):527–555. doi: 10.1016/0022-2836(90)90197-T. [DOI] [PubMed] [Google Scholar]
  29. Matthews B. W. Structural and genetic analysis of the folding and function of T4 lysozyme. FASEB J. 1996 Jan;10(1):35–41. doi: 10.1096/fasebj.10.1.8566545. [DOI] [PubMed] [Google Scholar]
  30. Myers J. K., Pace C. N. Hydrogen bonding stabilizes globular proteins. Biophys J. 1996 Oct;71(4):2033–2039. doi: 10.1016/S0006-3495(96)79401-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nall B. T., Landers T. A. Guanidine hydrochloride induced unfolding of yeast iso-2 cytochrome c. Biochemistry. 1981 Sep 15;20(19):5403–5411. doi: 10.1021/bi00522a008. [DOI] [PubMed] [Google Scholar]
  32. Nall B. T. Structural intermediates in folding of yeast iso-2 cytochrome c. Biochemistry. 1983 Mar 15;22(6):1423–1429. doi: 10.1021/bi00275a016. [DOI] [PubMed] [Google Scholar]
  33. Pace C. N. Contribution of the hydrophobic effect to globular protein stability. J Mol Biol. 1992 Jul 5;226(1):29–35. doi: 10.1016/0022-2836(92)90121-y. [DOI] [PubMed] [Google Scholar]
  34. Pace C. N., Shirley B. A., McNutt M., Gajiwala K. Forces contributing to the conformational stability of proteins. FASEB J. 1996 Jan;10(1):75–83. doi: 10.1096/fasebj.10.1.8566551. [DOI] [PubMed] [Google Scholar]
  35. Pickett S. D., Sternberg M. J. Empirical scale of side-chain conformational entropy in protein folding. J Mol Biol. 1993 Jun 5;231(3):825–839. doi: 10.1006/jmbi.1993.1329. [DOI] [PubMed] [Google Scholar]
  36. Pielak G. J., Auld D. S., Beasley J. R., Betz S. F., Cohen D. S., Doyle D. F., Finger S. A., Fredericks Z. L., Hilgen-Willis S., Saunders A. J. Protein thermal denaturation, side-chain models, and evolution: amino acid substitutions at a conserved helix-helix interface. Biochemistry. 1995 Mar 14;34(10):3268–3276. doi: 10.1021/bi00010a017. [DOI] [PubMed] [Google Scholar]
  37. Plaza del Pino I. M., Pace C. N., Freire E. Temperature and guanidine hydrochloride dependence of the structural stability of ribonuclease T1. Biochemistry. 1992 Nov 17;31(45):11196–11202. doi: 10.1021/bi00160a033. [DOI] [PubMed] [Google Scholar]
  38. Ponder J. W., Richards F. M. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol. 1987 Feb 20;193(4):775–791. doi: 10.1016/0022-2836(87)90358-5. [DOI] [PubMed] [Google Scholar]
  39. Potekhin S., Pfeil W. Microcalorimetric studies of conformational transitions of ferricytochrome c in acidic solution. Biophys Chem. 1989 Sep 15;34(1):55–62. doi: 10.1016/0301-4622(89)80041-9. [DOI] [PubMed] [Google Scholar]
  40. Privalov P. L., Makhatadze G. I. Contribution of hydration and non-covalent interactions to the heat capacity effect on protein unfolding. J Mol Biol. 1992 Apr 5;224(3):715–723. doi: 10.1016/0022-2836(92)90555-x. [DOI] [PubMed] [Google Scholar]
  41. Privalov P. L., Makhatadze G. I. Heat capacity of proteins. II. Partial molar heat capacity of the unfolded polypeptide chain of proteins: protein unfolding effects. J Mol Biol. 1990 May 20;213(2):385–391. doi: 10.1016/S0022-2836(05)80198-6. [DOI] [PubMed] [Google Scholar]
  42. Privalov P. L. Stability of proteins: small globular proteins. Adv Protein Chem. 1979;33:167–241. doi: 10.1016/s0065-3233(08)60460-x. [DOI] [PubMed] [Google Scholar]
  43. Rose G. D., Geselowitz A. R., Lesser G. J., Lee R. H., Zehfus M. H. Hydrophobicity of amino acid residues in globular proteins. Science. 1985 Aug 30;229(4716):834–838. doi: 10.1126/science.4023714. [DOI] [PubMed] [Google Scholar]
  44. Shirley B. A., Stanssens P., Hahn U., Pace C. N. Contribution of hydrogen bonding to the conformational stability of ribonuclease T1. Biochemistry. 1992 Jan 28;31(3):725–732. doi: 10.1021/bi00118a013. [DOI] [PubMed] [Google Scholar]
  45. Sondek J., Shortle D. Structural and energetic differences between insertions and substitutions in staphylococcal nuclease. Proteins. 1992 Apr;13(2):132–140. doi: 10.1002/prot.340130206. [DOI] [PubMed] [Google Scholar]
  46. Wells J. A. Additivity of mutational effects in proteins. Biochemistry. 1990 Sep 18;29(37):8509–8517. doi: 10.1021/bi00489a001. [DOI] [PubMed] [Google Scholar]
  47. Williams M. A., Goodfellow J. M., Thornton J. M. Buried waters and internal cavities in monomeric proteins. Protein Sci. 1994 Aug;3(8):1224–1235. doi: 10.1002/pro.5560030808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Xie D., Bhakuni V., Freire E. Calorimetric determination of the energetics of the molten globule intermediate in protein folding: apo-alpha-lactalbumin. Biochemistry. 1991 Nov 5;30(44):10673–10678. doi: 10.1021/bi00108a010. [DOI] [PubMed] [Google Scholar]
  49. Xu J., Baase W. A., Baldwin E., Matthews B. W. The response of T4 lysozyme to large-to-small substitutions within the core and its relation to the hydrophobic effect. Protein Sci. 1998 Jan;7(1):158–177. doi: 10.1002/pro.5560070117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Zhang L., Hermans J. Hydrophilicity of cavities in proteins. Proteins. 1996 Apr;24(4):433–438. doi: 10.1002/(SICI)1097-0134(199604)24:4<433::AID-PROT3>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  51. Zhou Y., Hall C. K., Karplus M. The calorimetric criterion for a two-state process revisited. Protein Sci. 1999 May;8(5):1064–1074. doi: 10.1110/ps.8.5.1064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Zuniga E. H., Nall B. T. Folding of yeast iso-1-AM cytochrome c. Biochemistry. 1983 Mar 15;22(6):1430–1437. doi: 10.1021/bi00275a017. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES