Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Dec;8(12):2711–2719. doi: 10.1110/ps.8.12.2711

Helix-bundle membrane protein fold templates.

J U Bowie 1
PMCID: PMC2144225  PMID: 10631987

Abstract

In the fold recognition approach to structure prediction, a sequence is tested for compatibility with an already known fold. For membrane proteins, however, few folds have been determined experimentally. Here the feasibility of computing the vast majority of likely membrane protein folds is tested. The results indicate that conformation space can be effectively sampled for small numbers of helices. The vast majority of potential monomeric membrane protein structures can be represented by about 30-folds for three helices, but increases exponentially to about 1,500,000 folds for seven helices. The generated folds could serve as templates for fold recognition or as starting points for conformational searches that are well distributed throughout conformation space.

Full Text

The Full Text of this article is available as a PDF (324.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams P. D., Arkin I. T., Engelman D. M., Brünger A. T. Computational searching and mutagenesis suggest a structure for the pentameric transmembrane domain of phospholamban. Nat Struct Biol. 1995 Feb;2(2):154–162. doi: 10.1038/nsb0295-154. [DOI] [PubMed] [Google Scholar]
  2. Adams P. D., Engelman D. M., Brünger A. T. Improved prediction for the structure of the dimeric transmembrane domain of glycophorin A obtained through global searching. Proteins. 1996 Nov;26(3):257–261. doi: 10.1002/(SICI)1097-0134(199611)26:3<257::AID-PROT2>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  3. Arkin I. T., Brünger A. T., Engelman D. M. Are there dominant membrane protein families with a given number of helices? Proteins. 1997 Aug;28(4):465–466. doi: 10.1002/(sici)1097-0134(199708)28:4<465::aid-prot1>3.0.co;2-9. [DOI] [PubMed] [Google Scholar]
  4. Bowie J. U. Helix packing in membrane proteins. J Mol Biol. 1997 Oct 10;272(5):780–789. doi: 10.1006/jmbi.1997.1279. [DOI] [PubMed] [Google Scholar]
  5. Bowie J. U., Lüthy R., Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science. 1991 Jul 12;253(5016):164–170. doi: 10.1126/science.1853201. [DOI] [PubMed] [Google Scholar]
  6. Boyd D., Schierle C., Beckwith J. How many membrane proteins are there? Protein Sci. 1998 Jan;7(1):201–205. doi: 10.1002/pro.5560070121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brouillette C. G., McMichens R. B., Stern L. J., Khorana H. G. Structure and thermal stability of monomeric bacteriorhodopsin in mixed phospholipid/detergent micelles. Proteins. 1989;5(1):38–46. doi: 10.1002/prot.340050106. [DOI] [PubMed] [Google Scholar]
  8. Chothia C., Levitt M., Richardson D. Helix to helix packing in proteins. J Mol Biol. 1981 Jan 5;145(1):215–250. doi: 10.1016/0022-2836(81)90341-7. [DOI] [PubMed] [Google Scholar]
  9. Chothia C. Proteins. One thousand families for the molecular biologist. Nature. 1992 Jun 18;357(6379):543–544. doi: 10.1038/357543a0. [DOI] [PubMed] [Google Scholar]
  10. Cohen F. E., Kuntz I. D. Prediction of the three-dimensional structure of human growth hormone. Proteins. 1987;2(2):162–166. doi: 10.1002/prot.340020209. [DOI] [PubMed] [Google Scholar]
  11. Cohen F. E., Sternberg M. J., Taylor W. R. Analysis and prediction of protein beta-sheet structures by a combinatorial approach. Nature. 1980 Jun 5;285(5764):378–382. doi: 10.1038/285378a0. [DOI] [PubMed] [Google Scholar]
  12. Cramer W. A., Engelman D. M., Von Heijne G., Rees D. C. Forces involved in the assembly and stabilization of membrane proteins. FASEB J. 1992 Dec;6(15):3397–3402. doi: 10.1096/fasebj.6.15.1464373. [DOI] [PubMed] [Google Scholar]
  13. Deisenhofer J., Epp O., Sinning I., Michel H. Crystallographic refinement at 2.3 A resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis. J Mol Biol. 1995 Feb 24;246(3):429–457. doi: 10.1006/jmbi.1994.0097. [DOI] [PubMed] [Google Scholar]
  14. Engelman D. M., Steitz T. A., Goldman A. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu Rev Biophys Biophys Chem. 1986;15:321–353. doi: 10.1146/annurev.bb.15.060186.001541. [DOI] [PubMed] [Google Scholar]
  15. Fischer D., Rice D., Bowie J. U., Eisenberg D. Assigning amino acid sequences to 3-dimensional protein folds. FASEB J. 1996 Jan;10(1):126–136. doi: 10.1096/fasebj.10.1.8566533. [DOI] [PubMed] [Google Scholar]
  16. Godzik A., Kolinski A., Skolnick J. Topology fingerprint approach to the inverse protein folding problem. J Mol Biol. 1992 Sep 5;227(1):227–238. doi: 10.1016/0022-2836(92)90693-e. [DOI] [PubMed] [Google Scholar]
  17. Govindarajan S., Recabarren R., Goldstein R. A. Estimating the total number of protein folds. Proteins. 1999 Jun 1;35(4):408–414. [PubMed] [Google Scholar]
  18. Grigorieff N., Ceska T. A., Downing K. H., Baldwin J. M., Henderson R. Electron-crystallographic refinement of the structure of bacteriorhodopsin. J Mol Biol. 1996 Jun 14;259(3):393–421. doi: 10.1006/jmbi.1996.0328. [DOI] [PubMed] [Google Scholar]
  19. Hinds D. A., Levitt M. A lattice model for protein structure prediction at low resolution. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2536–2540. doi: 10.1073/pnas.89.7.2536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jones D. T., Taylor W. R., Thornton J. M. A new approach to protein fold recognition. Nature. 1992 Jul 2;358(6381):86–89. doi: 10.1038/358086a0. [DOI] [PubMed] [Google Scholar]
  21. Koehl P., Levitt M. A brighter future for protein structure prediction. Nat Struct Biol. 1999 Feb;6(2):108–111. doi: 10.1038/5794. [DOI] [PubMed] [Google Scholar]
  22. Marchler-Bauer A., Bryant S. H. A measure of success in fold recognition. Trends Biochem Sci. 1997 Jul;22(7):236–240. doi: 10.1016/s0968-0004(97)01078-5. [DOI] [PubMed] [Google Scholar]
  23. Montelione G. T., Anderson S. Structural genomics: keystone for a Human Proteome Project. Nat Struct Biol. 1999 Jan;6(1):11–12. doi: 10.1038/4878. [DOI] [PubMed] [Google Scholar]
  24. Pappu R. V., Marshall G. R., Ponder J. W. A potential smoothing algorithm accurately predicts transmembrane helix packing. Nat Struct Biol. 1999 Jan;6(1):50–55. doi: 10.1038/4922. [DOI] [PubMed] [Google Scholar]
  25. Pebay-Peyroula E., Rummel G., Rosenbusch J. P., Landau E. M. X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science. 1997 Sep 12;277(5332):1676–1681. doi: 10.1126/science.277.5332.1676. [DOI] [PubMed] [Google Scholar]
  26. Rees D. C., DeAntonio L., Eisenberg D. Hydrophobic organization of membrane proteins. Science. 1989 Aug 4;245(4917):510–513. doi: 10.1126/science.2667138. [DOI] [PubMed] [Google Scholar]
  27. Sander C., Schneider R. Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins. 1991;9(1):56–68. doi: 10.1002/prot.340090107. [DOI] [PubMed] [Google Scholar]
  28. Smith T. F., Lo Conte L., Bienkowska J., Gaitatzes C., Rogers R. G., Jr, Lathrop R. Current limitations to protein threading approaches. J Comput Biol. 1997 Fall;4(3):217–225. doi: 10.1089/cmb.1997.4.217. [DOI] [PubMed] [Google Scholar]
  29. Sternberg M. J., Cohen F. E., Taylor W. R. A combinational approach to the prediction of the tertiary fold of globular proteins. Biochem Soc Trans. 1982 Oct;10(5):299–301. doi: 10.1042/bst0100299. [DOI] [PubMed] [Google Scholar]
  30. Taylor W. R., Jones D. T., Green N. M. A method for alpha-helical integral membrane protein fold prediction. Proteins. 1994 Mar;18(3):281–294. doi: 10.1002/prot.340180309. [DOI] [PubMed] [Google Scholar]
  31. Terwilliger T. C., Waldo G., Peat T. S., Newman J. M., Chu K., Berendzen J. Class-directed structure determination: foundation for a protein structure initiative. Protein Sci. 1998 Sep;7(9):1851–1856. doi: 10.1002/pro.5560070901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wallin E., von Heijne G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 1998 Apr;7(4):1029–1038. doi: 10.1002/pro.5560070420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zhang C., DeLisi C. Estimating the number of protein folds. J Mol Biol. 1998 Dec 18;284(5):1301–1305. doi: 10.1006/jmbi.1998.2282. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES