Abstract
Sequential 1H-NMR assignments of mouse [Cd7]-metallothionein-1 (MT1) have been carried out by standard homonuclear NMR methods and the use of an accordion-heteronuclear multiple quantum correlation (HMQC) experiment for establishing the metal, 113Cd2+, to cysteine connectivities. The three-dimensional structure was then calculated using the distance constraints from two-dimensional nuclear Overhauser effect (NOE) spectroscopy spectra and the Cys-Cd connectivities as input for a distance geometry-dynamical simulated annealing protocol in X-PLOR 3.851. Similar to the mammalian MT2 isoforms, the homologous primary structure of MT1 suggested two separate domains, each containing one metal cluster. Because there were no interdomain constraints, the structure calculation for the N-terminal beta- and the C-terminal alpha-domain were carried out separately. The structures are based on 409 NMR constraints, consisting of 381 NOEs and 28 cysteine-metal connectivities. The only elements of regular secondary structure found were two short stretches of 3(10) helices along with some half-turns in the alpha-domain. Structural comparison with rat liver MT2 showed high similarity, with the beta-domain structure in mouse MT1 showing evidence of increased flexibility compared to the same domain in MT2. The latter was reflected by the presence of fewer interresidue NOEs, no slowly exchanging backbone amide protons, and enhanced cadmium-cadmium exchange rates found in the beta-domain of MT1.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arseniev A., Schultze P., Wörgötter E., Braun W., Wagner G., Vasák M., Kägi J. H., Wüthrich K. Three-dimensional structure of rabbit liver [Cd7]metallothionein-2a in aqueous solution determined by nuclear magnetic resonance. J Mol Biol. 1988 Jun 5;201(3):637–657. doi: 10.1016/0022-2836(88)90644-4. [DOI] [PubMed] [Google Scholar]
- Brünger A. T., Clore G. M., Gronenborn A. M., Karplus M. Three-dimensional structure of proteins determined by molecular dynamics with interproton distance restraints: application to crambin. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3801–3805. doi: 10.1073/pnas.83.11.3801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clore G. M., Gronenborn A. M., Nilges M., Ryan C. A. Three-dimensional structure of potato carboxypeptidase inhibitor in solution. A study using nuclear magnetic resonance, distance geometry, and restrained molecular dynamics. Biochemistry. 1987 Dec 1;26(24):8012–8023. doi: 10.1021/bi00398a069. [DOI] [PubMed] [Google Scholar]
- Erickson J. C., Sewell A. K., Jensen L. T., Winge D. R., Palmiter R. D. Enhanced neurotrophic activity in Alzheimer's disease cortex is not associated with down-regulation of metallothionein-III (GIF). Brain Res. 1994 Jun 27;649(1-2):297–304. doi: 10.1016/0006-8993(94)91076-6. [DOI] [PubMed] [Google Scholar]
- Kägi J. H., Kojima Y. Chemistry and biochemistry of metallothionein. Experientia Suppl. 1987;52:25–61. doi: 10.1007/978-3-0348-6784-9_3. [DOI] [PubMed] [Google Scholar]
- Kägi J. H., Schäffer A. Biochemistry of metallothionein. Biochemistry. 1988 Nov 15;27(23):8509–8515. doi: 10.1021/bi00423a001. [DOI] [PubMed] [Google Scholar]
- Li H., Otvos J. D. 111Cd NMR studies of the domain specificity of Ag+ and Cu+ binding to metallothionein. Biochemistry. 1996 Nov 5;35(44):13929–13936. doi: 10.1021/bi961401n. [DOI] [PubMed] [Google Scholar]
- Messerle B. A., Bos M., Schäffer A., Vasák M., Kägi J. H., Wüthrich K. Amide proton exchange in human metallothionein-2 measured by nuclear magnetic resonance spectroscopy. J Mol Biol. 1990 Aug 5;214(3):781–786. doi: 10.1016/0022-2836(90)90292-T. [DOI] [PubMed] [Google Scholar]
- Messerle B. A., Schäffer A., Vasák M., Kägi J. H., Wüthrich K. Comparison of the solution conformations of human [Zn7]-metallothionein-2 and [Cd7]-metallothionein-2 using nuclear magnetic resonance spectroscopy. J Mol Biol. 1992 May 20;225(2):433–443. doi: 10.1016/0022-2836(92)90930-i. [DOI] [PubMed] [Google Scholar]
- Messerle B. A., Schäffer A., Vasák M., Kägi J. H., Wüthrich K. Three-dimensional structure of human [113Cd7]metallothionein-2 in solution determined by nuclear magnetic resonance spectroscopy. J Mol Biol. 1990 Aug 5;214(3):765–779. doi: 10.1016/0022-2836(90)90291-S. [DOI] [PubMed] [Google Scholar]
- Narula S. S., Brouwer M., Hua Y., Armitage I. M. Three-dimensional solution structure of Callinectes sapidus metallothionein-1 determined by homonuclear and heteronuclear magnetic resonance spectroscopy. Biochemistry. 1995 Jan 17;34(2):620–631. doi: 10.1021/bi00002a029. [DOI] [PubMed] [Google Scholar]
- Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
- Nilges M., Clore G. M., Gronenborn A. M. Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance geometry-dynamical simulated annealing calculations. FEBS Lett. 1988 Mar 14;229(2):317–324. doi: 10.1016/0014-5793(88)81148-7. [DOI] [PubMed] [Google Scholar]
- Otvos J. D., Engeseth H. R., Nettesheim D. G., Hilt C. R. Interprotein metal exchange reactions of metallothionein. Experientia Suppl. 1987;52:171–178. doi: 10.1007/978-3-0348-6784-9_10. [DOI] [PubMed] [Google Scholar]
- Piotto M., Saudek V., Sklenár V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR. 1992 Nov;2(6):661–665. doi: 10.1007/BF02192855. [DOI] [PubMed] [Google Scholar]
- Robbins A. H., McRee D. E., Williamson M., Collett S. A., Xuong N. H., Furey W. F., Wang B. C., Stout C. D. Refined crystal structure of Cd, Zn metallothionein at 2.0 A resolution. J Mol Biol. 1991 Oct 20;221(4):1269–1293. [PubMed] [Google Scholar]
- Schultze P., Wörgötter E., Braun W., Wagner G., Vasák M., Kägi J. H., Wüthrich K. Conformation of [Cd7]-metallothionein-2 from rat liver in aqueous solution determined by nuclear magnetic resonance spectroscopy. J Mol Biol. 1988 Sep 5;203(1):251–268. doi: 10.1016/0022-2836(88)90106-4. [DOI] [PubMed] [Google Scholar]
- Williamson M. P., Havel T. F., Wüthrich K. Solution conformation of proteinase inhibitor IIA from bull seminal plasma by 1H nuclear magnetic resonance and distance geometry. J Mol Biol. 1985 Mar 20;182(2):295–315. doi: 10.1016/0022-2836(85)90347-x. [DOI] [PubMed] [Google Scholar]
- Wishart D. S., Bigam C. G., Yao J., Abildgaard F., Dyson H. J., Oldfield E., Markley J. L., Sykes B. D. 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR. 1995 Sep;6(2):135–140. doi: 10.1007/BF00211777. [DOI] [PubMed] [Google Scholar]