Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Dec;8(12):2791–2805. doi: 10.1110/ps.8.12.2791

Function of the central domain of streptokinase in substrate plasminogen docking and processing revealed by site-directed mutagenesis.

A Chaudhary 1, S Vasudha 1, K Rajagopal 1, S S Komath 1, N Garg 1, M Yadav 1, S C Mande 1, G Sahni 1
PMCID: PMC2144232  PMID: 10631997

Abstract

The possible role of the central beta-domain (residues 151-287) of streptokinase (SK) was probed by site-specifically altering two charged residues at a time to alanines in a region (residues 230-290) previously identified by Peptide Walking to play a key role in plasminogen (PG) activation. These mutants were then screened for altered ability to activate equimolar "partner" human PG, or altered interaction with substrate PG resulting in an overall compromised capability for substrate PG processing. Of the eight initial alanine-linker mutants of SK, one mutant, viz. SK(KK256.257AA) (SK-D1), showed a roughly 20-fold reduction in PG activator activity in comparison to wild-type SK expressed in Escherichia coli (nSK). Five other mutants were as active as nSK, with two [SK(RE248.249AA) and SK(EK281.282AA), referred to as SK(C) and SK(H), respectively] showing specific activities approximately one-half and two-thirds, respectively, that of nSK. Unlike SK(C) and SK(H), however, SK(D1) showed an extended initial delay in the kinetics of PG activation. These features were drastically accentuated when the charges on the two Lys residues at positions 256 and 257 of nSK were reversed, to obtain SK(KK256.257EE) [SK(D2)]. This mutant showed a PG activator activity approximately 10-fold less than that of SK(D1). Remarkably, inclusion of small amounts of human plasmin (PN) in the PG activation reactions of SK(D2) resulted in a dramatic, PN dose-dependent rejuvenation of its PG activation capability, indicating that it required pre-existing PN to form a functional activator since it could not effect active site exposure in partner PG on its own, a conclusion further confirmed by its inability to show a "burst" of p-nitrophenol release in the presence of equimolar human PG and p-nitrophenyl guanidino benzoate. The steady-state kinetic parameters for HPG activation of its 1:1 complex with human PN revealed that although it could form a highly functional activator once "supplied" with a mature active site, the Km for PG was increased nearly eightfold in comparison to that of nSK-PN. SK mutants carrying simultaneous two- and three-site charge-cluster alterations, viz., SK(RE24249AA:EK281.282AA) [SK(CH)], SK(EK272.273AA;EK281.282AA) [SK(FH)], and SK(RE248.249AA;EK272.273AA:EK281.282AA+ ++) [SK(CFH)], showed additive/synergistic influence of multiple charge-cluster mutations on HPG activation when compared to the respective "single-site" mutants, with the "triple-site" mutant [SK(CFH)] showing absolutely no detectable HPG activation ability. Nevertheless, like the other constructs, the double- and triple-charge cluster mutants retained a native like affinity for complexation with partner PG. Their overall structure also, as judged by far-ultraviolet circular dichroism, was closely similar to that of nSK. These results provide the first experimental evidence for a direct assistance by the SK beta-domain in the docking and processing of substrate PG by the activator complex, a facet not readily evident probably because of the flexibility of this domain in the recent X-ray crystal structure of the SK-plasmin light chain complex.

Full Text

The Full Text of this article is available as a PDF (330.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bock P. E., Day D. E., Verhamme I. M., Bernardo M. M., Olson S. T., Shore J. D. Analogs of human plasminogen that are labeled with fluorescence probes at the catalytic site of the zymogen. Preparation, characterization, and interaction with streptokinase. J Biol Chem. 1996 Jan 12;271(2):1072–1080. doi: 10.1074/jbc.271.2.1072. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Chase T., Jr, Shaw E. Comparison of the esterase activities of trypsin, plasmin, and thrombin on guanidinobenzoate esters. Titration of the enzymes. Biochemistry. 1969 May;8(5):2212–2224. doi: 10.1021/bi00833a063. [DOI] [PubMed] [Google Scholar]
  4. Collen D., Schlott B., Engelborghs Y., Van Hoef B., Hartmann M., Lijnen H. R., Behnke D. On the mechanism of the activation of human plasminogen by recombinant staphylokinase. J Biol Chem. 1993 Apr 15;268(11):8284–8289. [PubMed] [Google Scholar]
  5. Conejero-Lara F., Parrado J., Azuaga A. I., Dobson C. M., Ponting C. P. Analysis of the interactions between streptokinase domains and human plasminogen. Protein Sci. 1998 Oct;7(10):2190–2199. doi: 10.1002/pro.5560071017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Conejero-Lara F., Parrado J., Azuaga A. I., Smith R. A., Ponting C. P., Dobson C. M. Thermal stability of the three domains of streptokinase studied by circular dichroism and nuclear magnetic resonance. Protein Sci. 1996 Dec;5(12):2583–2591. doi: 10.1002/pro.5560051221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davidson D. J., Higgins D. L., Castellino F. J. Plasminogen activator activities of equimolar complexes of streptokinase with variant recombinant plasminogens. Biochemistry. 1990 Apr 10;29(14):3585–3590. doi: 10.1021/bi00466a023. [DOI] [PubMed] [Google Scholar]
  8. Deutsch D. G., Mertz E. T. Plasminogen: purification from human plasma by affinity chromatography. Science. 1970 Dec 4;170(3962):1095–1096. doi: 10.1126/science.170.3962.1095. [DOI] [PubMed] [Google Scholar]
  9. Esmon C. T., Mather T. Switching serine protease specificity. Nat Struct Biol. 1998 Nov;5(11):933–937. doi: 10.1038/2906. [DOI] [PubMed] [Google Scholar]
  10. Fay W. P., Bokka L. V. Functional analysis of the amino- and carboxyl-termini of streptokinase. Thromb Haemost. 1998 May;79(5):985–991. [PubMed] [Google Scholar]
  11. Fraker P. J., Speck J. C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. doi: 10.1016/0006-291x(78)91322-0. [DOI] [PubMed] [Google Scholar]
  12. Heath A. B., Gaffney P. J. A collaborative study to establish the second international standard for streptokinase. Thromb Haemost. 1990 Oct 22;64(2):267–269. [PubMed] [Google Scholar]
  13. Khan A. R., James M. N. Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci. 1998 Apr;7(4):815–836. doi: 10.1002/pro.5560070401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lin L. F., Oeun S., Houng A., Reed G. L. Mutation of lysines in a plasminogen binding region of streptokinase identifies residues important for generating a functional activator complex. Biochemistry. 1996 Dec 24;35(51):16879–16885. doi: 10.1021/bi961531w. [DOI] [PubMed] [Google Scholar]
  15. MARKUS G., WERKHEISER W. C. THE INTERACTION OF STREPTOKINASE WITH PLASMINOGEN. I. FUNCTIONAL PROPERTIES OF THE ACTIVATED ENZYME. J Biol Chem. 1964 Aug;239:2637–2643. [PubMed] [Google Scholar]
  16. Malke H., Ferretti J. J. Streptokinase: cloning, expression, and excretion by Escherichia coli. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3557–3561. doi: 10.1073/pnas.81.11.3557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Malke H., Roe B., Ferretti J. J. Nucleotide sequence of the streptokinase gene from Streptococcus equisimilis H46A. Gene. 1985;34(2-3):357–362. doi: 10.1016/0378-1119(85)90145-3. [DOI] [PubMed] [Google Scholar]
  18. Mangel W. F., Lin B. H., Ramakrishnan V. Characterization of an extremely large, ligand-induced conformational change in plasminogen. Science. 1990 Apr 6;248(4951):69–73. doi: 10.1126/science.2108500. [DOI] [PubMed] [Google Scholar]
  19. Marder V. J. Recombinant streptokinase: opportunity for an improved agent. Blood Coagul Fibrinolysis. 1993 Dec;4(6):1039–1040. [PubMed] [Google Scholar]
  20. Marshall J. M., Brown A. J., Ponting C. P. Conformational studies of human plasminogen and plasminogen fragments: evidence for a novel third conformation of plasminogen. Biochemistry. 1994 Mar 29;33(12):3599–3606. doi: 10.1021/bi00178a017. [DOI] [PubMed] [Google Scholar]
  21. McClintock D. K., Bell P. H. The mechanism of activation of human plasminogen by streptokinase. Biochem Biophys Res Commun. 1971 May 7;43(3):694–702. doi: 10.1016/0006-291x(71)90670-x. [DOI] [PubMed] [Google Scholar]
  22. Nihalani D., Kumar R., Rajagopal K., Sahni G. Role of the amino-terminal region of streptokinase in the generation of a fully functional plasminogen activator complex probed with synthetic peptides. Protein Sci. 1998 Mar;7(3):637–648. doi: 10.1002/pro.5560070313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nihalani D., Raghava G. P., Sahni G. Mapping of the plasminogen binding site of streptokinase with short synthetic peptides. Protein Sci. 1997 Jun;6(6):1284–1292. doi: 10.1002/pro.5560060616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nihalani D., Sahni G. Streptokinase contains two independent plasminogen-binding sites. Biochem Biophys Res Commun. 1995 Dec 26;217(3):1245–1254. doi: 10.1006/bbrc.1995.2902. [DOI] [PubMed] [Google Scholar]
  25. Parrado J., Conejero-Lara F., Smith R. A., Marshall J. M., Ponting C. P., Dobson C. M. The domain organization of streptokinase: nuclear magnetic resonance, circular dichroism, and functional characterization of proteolytic fragments. Protein Sci. 1996 Apr;5(4):693–704. doi: 10.1002/pro.5560050414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Parry M. A., Fernandez-Catalan C., Bergner A., Huber R., Hopfner K. P., Schlott B., Gührs K. H., Bode W. The ternary microplasmin-staphylokinase-microplasmin complex is a proteinase-cofactor-substrate complex in action. Nat Struct Biol. 1998 Oct;5(10):917–923. doi: 10.1038/2359. [DOI] [PubMed] [Google Scholar]
  27. Pratap J., Kaur J., RajaMohan G., Singh D., Dikshit K. L. Role of N-terminal domain of streptokinase in protein transport. Biochem Biophys Res Commun. 1996 Oct 3;227(1):303–310. doi: 10.1006/bbrc.1996.1504. [DOI] [PubMed] [Google Scholar]
  28. Radek J. T., Castellino F. J. Conformational properties of streptokinase. J Biol Chem. 1989 Jun 15;264(17):9915–9922. [PubMed] [Google Scholar]
  29. Radek J. T., Davidson D. J., Castellino F. J. Streptokinase-plasmin(ogen) activator assays. Methods Enzymol. 1993;223:145–155. doi: 10.1016/0076-6879(93)23042-l. [DOI] [PubMed] [Google Scholar]
  30. Raghava G. P., Sahni G. GMAP: a multi-purpose computer program to aid synthetic gene design, cassette mutagenesis and the introduction of potential restriction sites into DNA sequences. Biotechniques. 1994 Jun;16(6):1116–1123. [PubMed] [Google Scholar]
  31. Reddy K. N., Markus G. Mechanism of activation of human plasminogen by streptokinase. Presence of active center in streptokinase-plasminogen complex. J Biol Chem. 1972 Mar 25;247(6):1683–1691. [PubMed] [Google Scholar]
  32. Reed G. L., Lin L. F., Parhami-Seren B., Kussie P. Identification of a plasminogen binding region in streptokinase that is necessary for the creation of a functional streptokinase-plasminogen activator complex. Biochemistry. 1995 Aug 15;34(32):10266–10271. doi: 10.1021/bi00032a021. [DOI] [PubMed] [Google Scholar]
  33. Robbins K. C., Summaria L., Wohl R. C. Human plasmin. Methods Enzymol. 1981;80(Pt 100):379–387. doi: 10.1016/s0076-6879(81)80032-8. [DOI] [PubMed] [Google Scholar]
  34. Rodríguez P., Fuentes P., Barro M., Alvarez J. G., Muñoz E., Collen D., Lijnen H. R. Structural domains of streptokinase involved in the interaction with plasminogen. Eur J Biochem. 1995 Apr 1;229(1):83–90. doi: 10.1111/j.1432-1033.1995.tb20441.x. [DOI] [PubMed] [Google Scholar]
  35. Rodríguez P., Hernàndez L., Muñoz E., Castro A., de la Fuente J., Herrera L. Purification of streptokinase by affinity chromatography on immobilized acylated human plasminogen. Biotechniques. 1992 Mar;12(3):424–429. [PubMed] [Google Scholar]
  36. Sarkar G., Sommer S. S. The "megaprimer" method of site-directed mutagenesis. Biotechniques. 1990 Apr;8(4):404–407. [PubMed] [Google Scholar]
  37. Shi G. Y., Chang B. I., Chen S. M., Wu D. H., Wu H. L. Function of streptokinase fragments in plasminogen activation. Biochem J. 1994 Nov 15;304(Pt 1):235–241. doi: 10.1042/bj3040235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Shi G. Y., Chang B. I., Wu D. H., Wu H. L. Interaction of immobilized human plasminogen and plasmin with streptokinase. Biochem Biophys Res Commun. 1993 Aug 31;195(1):192–200. doi: 10.1006/bbrc.1993.2029. [DOI] [PubMed] [Google Scholar]
  39. Shi G. Y., Change B. I., Wu D. H., Ha Y. M., Wu H. L. Activation of human and bovine plasminogens by the microplasmin and streptokinase complex. Thromb Res. 1990 May 1;58(3):317–329. doi: 10.1016/0049-3848(90)90101-h. [DOI] [PubMed] [Google Scholar]
  40. Shi G. Y., Wu H. L. Isolation and characterization of microplasminogen. A low molecular weight form of plasminogen. J Biol Chem. 1988 Nov 15;263(32):17071–17075. [PubMed] [Google Scholar]
  41. Smith A. M., Klugman K. P. "Megaprimer" method of PCR-based mutagenesis: the concentration of megaprimer is a critical factor. Biotechniques. 1997 Mar;22(3):438–442. doi: 10.2144/97223bm13. [DOI] [PubMed] [Google Scholar]
  42. Stults N. L., Asta L. M., Lee Y. C. Immobilization of proteins on oxidized crosslinked Sepharose preparations by reductive amination. Anal Biochem. 1989 Jul;180(1):114–119. doi: 10.1016/0003-2697(89)90097-3. [DOI] [PubMed] [Google Scholar]
  43. Wang X., Lin X., Loy J. A., Tang J., Zhang X. C. Crystal structure of the catalytic domain of human plasmin complexed with streptokinase. Science. 1998 Sep 11;281(5383):1662–1665. doi: 10.1126/science.281.5383.1662. [DOI] [PubMed] [Google Scholar]
  44. Wohl R. C. Interference of active site specific reagents in plasminogen-streptokinase active site formation. Biochemistry. 1984 Aug 14;23(17):3799–3804. doi: 10.1021/bi00312a002. [DOI] [PubMed] [Google Scholar]
  45. Wohl R. C., Summaria L., Robbins K. C. Kinetics of activation of human plasminogen by different activator species at pH 7.4 and 37 degrees C. J Biol Chem. 1980 Mar 10;255(5):2005–2013. [PubMed] [Google Scholar]
  46. Young K. C., Shi G. Y., Wu D. H., Chang L. C., Chang B. I., Ou C. P., Wu H. L. Plasminogen activation by streptokinase via a unique mechanism. J Biol Chem. 1998 Jan 30;273(5):3110–3116. doi: 10.1074/jbc.273.5.3110. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES