Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Dec;8(12):2742–2750. doi: 10.1110/ps.8.12.2742

Structural determinants in domain II of human glutathione transferase M2-2 govern the characteristic activities with aminochrome, 2-cyano-1,3-dimethyl-1-nitrosoguanidine, and 1,2-dichloro-4-nitrobenzene.

L O Hansson 1, R Bolton-Grob 1, M Widersten 1, B Mannervik 1
PMCID: PMC2144236  PMID: 10631991

Abstract

Two human Mu class glutathione transferases, hGST M1-1 and hGST M2-2, with high sequence identity (84%) exhibit a 100-fold difference in activities with the substrates aminochrome, 2-cyano-1,3-dimethyl-1-nitrosoguanidine (cyanoDMNG), and 1,2-dichloro-4-nitrobenzene (DCNB), hGST M2-2 being more efficient. A sequence alignment with the rat Mu class GST M3-3, an enzyme also showing high activities with aminochrome and DCNB, demonstrated an identical structural cluster of residues 164-168 in the alpha6-helices of rGST M3-3 and hGST M2-2, a motif unique among known sequences of human, rat, and mouse Mu class GSTs. A putative electrostatic network Arg107-Asp161-Arg165-Glu164(-Gln167) was identified based on the published three-dimensional structure of hGST M2-2. Corresponding variant residues of hGSTM1-1 (Leu165, Asp164, and Arg167) as well as the active site residue Ser209 were targeted for point mutations, introducing hGST M2-2 residues to the framework of hGST M1-1, to improve the activities with substrates characteristic of hGST M2-2. In addition, chimeric enzymes composed of hGST M1-1 and hGST M2-2 sequences were analyzed. The activity with 1-chloro-2,4-dinitrobenzene (CDNB) was retained in all mutant enzymes, proving that they were catalytically competent, but none of the point mutations improved the activities with hGST M2-2 characteristic substrates. The chimeric enzymes showed that the structural determinants of these activities reside in domain II and that residue Arg165 in hGST M2-2 appears to be important for the reactions with cyanoDMNG and DCNB. A mutant, which contained all the hGST M2-2 residues of the putative electrostatic network, was still lacking one order of magnitude of the activities with the characteristic substrates of wild-type hGST M2-2. It was concluded that a limited set of point mutations is not sufficient, but that indirect secondary structural affects also contribute to the hGST M2-2 characteristic activities with aminochrome, cyanoDMNG, and DCNB.

Full Text

The Full Text of this article is available as a PDF (440.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramovitz M., Ishigaki S., Felix A. M., Listowsky I. Expression of an enzymatically active Yb3 glutathione S-transferase in Escherichia coli and identification of its natural form in rat brain. J Biol Chem. 1988 Nov 25;263(33):17627–17631. [PubMed] [Google Scholar]
  2. Arkin M. R., Wells J. A. Probing the importance of second sphere residues in an esterolytic antibody by phage display. J Mol Biol. 1998 Dec 11;284(4):1083–1094. doi: 10.1006/jmbi.1998.2234. [DOI] [PubMed] [Google Scholar]
  3. Armstrong R. N. Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem Res Toxicol. 1997 Jan;10(1):2–18. doi: 10.1021/tx960072x. [DOI] [PubMed] [Google Scholar]
  4. Baez S., Linderson Y., Segura-Aguilar J. Superoxide dismutase and catalase enhance autoxidation during one-electron reduction of aminochrome by NADPH-cytochrome P-450 reductase. Biochem Mol Med. 1995 Feb;54(1):12–18. doi: 10.1006/bmme.1995.1002. [DOI] [PubMed] [Google Scholar]
  5. Baez S., Segura-Aguilar J., Widersten M., Johansson A. S., Mannervik B. Glutathione transferases catalyse the detoxication of oxidized metabolites (o-quinones) of catecholamines and may serve as an antioxidant system preventing degenerative cellular processes. Biochem J. 1997 May 15;324(Pt 1):25–28. doi: 10.1042/bj3240025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Björnestedt R., Tardioli S., Mannervik B. The high activity of rat glutathione transferase 8-8 with alkene substrates is dependent on a glycine residue in the active site. J Biol Chem. 1995 Dec 15;270(50):29705–29709. doi: 10.1074/jbc.270.50.29705. [DOI] [PubMed] [Google Scholar]
  7. Björnestedt R., Widersten M., Board P. G., Mannervik B. Design of two chimaeric human-rat class alpha glutathione transferases for probing the contribution of C-terminal segments of protein structure to the catalytic properties. Biochem J. 1992 Mar 1;282(Pt 2):505–510. doi: 10.1042/bj2820505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Booth J., Boyland E., Sims P. An enzyme from rat liver catalysing conjugations with glutathione. Biochem J. 1961 Jun;79(3):516–524. doi: 10.1042/bj0790516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Comstock K. E., Widersten M., Hao X. Y., Henner W. D., Mannervik B. A comparison of the enzymatic and physicochemical properties of human glutathione transferase M4-4 and three other human Mu class enzymes. Arch Biochem Biophys. 1994 Jun;311(2):487–495. doi: 10.1006/abbi.1994.1266. [DOI] [PubMed] [Google Scholar]
  10. Dirr H., Reinemer P., Huber R. X-ray crystal structures of cytosolic glutathione S-transferases. Implications for protein architecture, substrate recognition and catalytic function. Eur J Biochem. 1994 Mar 15;220(3):645–661. doi: 10.1111/j.1432-1033.1994.tb18666.x. [DOI] [PubMed] [Google Scholar]
  11. Graminski G. F., Zhang P. H., Sesay M. A., Ammon H. L., Armstrong R. N. Formation of the 1-(S-glutathionyl)-2,4,6-trinitrocyclohexadienate anion at the active site of glutathione S-transferase: evidence for enzymic stabilization of sigma-complex intermediates in nucleophilic aromatic substitution reactions. Biochemistry. 1989 Jul 25;28(15):6252–6258. doi: 10.1021/bi00441a017. [DOI] [PubMed] [Google Scholar]
  12. Habig W. H., Pabst M. J., Jakoby W. B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974 Nov 25;249(22):7130–7139. [PubMed] [Google Scholar]
  13. Hansson L. O., Bolton-Grob R., Massoud T., Mannervik B. Evolution of differential substrate specificities in Mu class glutathione transferases probed by DNA shuffling. J Mol Biol. 1999 Mar 26;287(2):265–276. doi: 10.1006/jmbi.1999.2607. [DOI] [PubMed] [Google Scholar]
  14. Higuchi R., Krummel B., Saiki R. K. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 1988 Aug 11;16(15):7351–7367. doi: 10.1093/nar/16.15.7351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hubatsch I., Ridderström M., Mannervik B. Human glutathione transferase A4-4: an alpha class enzyme with high catalytic efficiency in the conjugation of 4-hydroxynonenal and other genotoxic products of lipid peroxidation. Biochem J. 1998 Feb 15;330(Pt 1):175–179. doi: 10.1042/bj3300175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jensen D. E., Belka G. K., Dworkin C. Denitrosation of 1,3-dimethyl-2-cyano-1-nitrosoguanidine in rat primary hepatocyte cultures. Biochem Pharmacol. 1997 May 9;53(9):1297–1306. doi: 10.1016/s0006-2952(96)00861-1. [DOI] [PubMed] [Google Scholar]
  17. Jensen D. E., Mackay R. L. Rat, mouse and hamster isozyme specificity in the glutathione transferase-mediated denitrosation of nitrosoguanidinium compounds. Cancer Res. 1990 Mar 1;50(5):1440–1448. [PubMed] [Google Scholar]
  18. Jensen D. E., Stelman G. J. Evidence for cytosolic glutathione transferase-mediated denitrosation of nitrosocimetidine and 1-methyl-2-nitro-1-nitrosoguanidine. Carcinogenesis. 1987 Dec;8(12):1791–1800. doi: 10.1093/carcin/8.12.1791. [DOI] [PubMed] [Google Scholar]
  19. Ji X., Zhang P., Armstrong R. N., Gilliland G. L. The three-dimensional structure of a glutathione S-transferase from the mu gene class. Structural analysis of the binary complex of isoenzyme 3-3 and glutathione at 2.2-A resolution. Biochemistry. 1992 Oct 27;31(42):10169–10184. doi: 10.1021/bi00157a004. [DOI] [PubMed] [Google Scholar]
  20. Johansson A. S., Bolton-Grob R., Mannervik B. Use of silent mutations in cDNA encoding human glutathione transferase M2-2 for optimized expression in Escherichia coli. Protein Expr Purif. 1999 Oct;17(1):105–112. doi: 10.1006/prep.1999.1117. [DOI] [PubMed] [Google Scholar]
  21. Mannervik B., Alin P., Guthenberg C., Jensson H., Tahir M. K., Warholm M., Jörnvall H. Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7202–7206. doi: 10.1073/pnas.82.21.7202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mannervik B., Awasthi Y. C., Board P. G., Hayes J. D., Di Ilio C., Ketterer B., Listowsky I., Morgenstern R., Muramatsu M., Pearson W. R. Nomenclature for human glutathione transferases. Biochem J. 1992 Feb 15;282(Pt 1):305–306. doi: 10.1042/bj2820305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mannervik B., Danielson U. H. Glutathione transferases--structure and catalytic activity. CRC Crit Rev Biochem. 1988;23(3):283–337. doi: 10.3109/10409238809088226. [DOI] [PubMed] [Google Scholar]
  24. Mannervik B., Guthenberg C. Glutathione transferase (human placenta). Methods Enzymol. 1981;77:231–235. doi: 10.1016/s0076-6879(81)77030-7. [DOI] [PubMed] [Google Scholar]
  25. Mannervik B. The isoenzymes of glutathione transferase. Adv Enzymol Relat Areas Mol Biol. 1985;57:357–417. doi: 10.1002/9780470123034.ch5. [DOI] [PubMed] [Google Scholar]
  26. Nuccetelli M., Mazzetti A. P., Rossjohn J., Parker M. W., Board P., Caccuri A. M., Federici G., Ricci G., Lo Bello M. Shifting substrate specificity of human glutathione transferase (from class Pi to class alpha) by a single point mutation. Biochem Biophys Res Commun. 1998 Nov 9;252(1):184–189. doi: 10.1006/bbrc.1998.9575. [DOI] [PubMed] [Google Scholar]
  27. O'Dwyer P. J., LaCreta F., Nash S., Tinsley P. W., Schilder R., Clapper M. L., Tew K. D., Panting L., Litwin S., Comis R. L. Phase I study of thiotepa in combination with the glutathione transferase inhibitor ethacrynic acid. Cancer Res. 1991 Nov 15;51(22):6059–6065. [PubMed] [Google Scholar]
  28. Oue S., Okamoto A., Yano T., Kagamiyama H. Redesigning the substrate specificity of an enzyme by cumulative effects of the mutations of non-active site residues. J Biol Chem. 1999 Jan 22;274(4):2344–2349. doi: 10.1074/jbc.274.4.2344. [DOI] [PubMed] [Google Scholar]
  29. Patskovsky Y. V., Patskovska L. N., Listowsky I. Functions of His107 in the catalytic mechanism of human glutathione S-transferase hGSTM1a-1a. Biochemistry. 1999 Jan 26;38(4):1193–1202. doi: 10.1021/bi982164m. [DOI] [PubMed] [Google Scholar]
  30. Raghunathan S., Chandross R. J., Kretsinger R. H., Allison T. J., Penington C. J., Rule G. S. Crystal structure of human class mu glutathione transferase GSTM2-2. Effects of lattice packing on conformational heterogeneity. J Mol Biol. 1994 May 20;238(5):815–832. doi: 10.1006/jmbi.1994.1336. [DOI] [PubMed] [Google Scholar]
  31. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Segura-Aguilar J., Baez S., Widersten M., Welch C. J., Mannervik B. Human class Mu glutathione transferases, in particular isoenzyme M2-2, catalyze detoxication of the dopamine metabolite aminochrome. J Biol Chem. 1997 Feb 28;272(9):5727–5731. doi: 10.1074/jbc.272.9.5727. [DOI] [PubMed] [Google Scholar]
  33. Segura-Aguilar J., Lind C. On the mechanism of the Mn3(+)-induced neurotoxicity of dopamine:prevention of quinone-derived oxygen toxicity by DT diaphorase and superoxide dismutase. Chem Biol Interact. 1989;72(3):309–324. doi: 10.1016/0009-2797(89)90006-9. [DOI] [PubMed] [Google Scholar]
  34. Simons P. C., Vander Jagt D. L. Purification of glutathione S-transferases by glutathione-affinity chromatography. Methods Enzymol. 1981;77:235–237. doi: 10.1016/s0076-6879(81)77031-9. [DOI] [PubMed] [Google Scholar]
  35. Wedemayer G. J., Patten P. A., Wang L. H., Schultz P. G., Stevens R. C. Structural insights into the evolution of an antibody combining site. Science. 1997 Jun 13;276(5319):1665–1669. doi: 10.1126/science.276.5319.1665. [DOI] [PubMed] [Google Scholar]
  36. Widersten M., Huang M., Mannervik B. Optimized heterologous expression of the polymorphic human glutathione transferase M1-1 based on silent mutations in the corresponding cDNA. Protein Expr Purif. 1996 Jun;7(4):367–372. doi: 10.1006/prep.1996.0054. [DOI] [PubMed] [Google Scholar]
  37. Widersten M., Pearson W. R., Engström A., Mannervik B. Heterologous expression of the allelic variant mu-class glutathione transferases mu and psi. Biochem J. 1991 Jun 1;276(Pt 2):519–524. doi: 10.1042/bj2760519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wilce M. C., Parker M. W. Structure and function of glutathione S-transferases. Biochim Biophys Acta. 1994 Mar 16;1205(1):1–18. doi: 10.1016/0167-4838(94)90086-8. [DOI] [PubMed] [Google Scholar]
  39. Yano T., Oue S., Kagamiyama H. Directed evolution of an aspartate aminotransferase with new substrate specificities. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5511–5515. doi: 10.1073/pnas.95.10.5511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zhang P., Liu S., Shan S. O., Ji X., Gilliland G. L., Armstrong R. N. Modular mutagenesis of exons 1, 2, and 8 of a glutathione S-transferase from the mu class. Mechanistic and structural consequences for chimeras of isoenzyme 3-3. Biochemistry. 1992 Oct 27;31(42):10185–10193. doi: 10.1021/bi00157a005. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES