Abstract
Acetylcholinesterase (AChE) is an enzyme broadly distributed in many species, including parasites. It occurs in multiple molecular forms that differ in their quaternary structure and mode of anchoring to the cell surface. This review summarizes biochemical and immunological investigations carried out in our laboratories on AChE of the helmint, Schistosoma mansoni. AChE appears in S. mansoni in two principal molecular forms, both globular, with sedimentation coefficients of approximately 6.5 and 8 S. On the basis of their substrate specificity and sensitivity to inhibitors, both are "true" acetylcholinesterases. Approximately half of the AChE activity of S. mansoni is located on the outer surface of the parasite, attached to the tegumental membrane via a covalently attached glycosylphosphatidylinositol anchor. The remainder is located within the parasite, mainly associated with muscle tissue. Whereas the internal enzyme is most likely involved in termination of neurotransmission at cholinergic synapses, the role of the surface enzyme remains to be established; there are, however, indications that it is involved in signal transduction. The two forms of AChE differ in their heparin-binding properties, only the internal 8 S form of the AChE being retained on a heparin column. The two forms differ also in their immunological specificity, since they are selectively recognized by different monoclonal antibodies. Polyclonal antibodies raised against S. mansoni AChE purified by affinity chromatography are specific for the parasite AChE, reacting with both molecular forms, but do not recognize AChE from other species. They interact with the surface-localized enzyme on the intact organism, and produce almost total complement-dependent killing of the parasite. S. mansoni AChE is thus demonstrated to be a functional protein, involved in multifaceted activities, which can serve as a suitable candidate for diagnostic purposes, vaccine development, and drug design.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anglister L., Haesaert B., McMahan U. J. Globular and asymmetric acetylcholinesterase in the synaptic basal lamina of skeletal muscle. J Cell Biol. 1994 Apr;125(1):183–196. doi: 10.1083/jcb.125.1.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anglister L., Tarrab-Hazdai R., Fuchs S., Silman I. Immunological cross-reactivity between electric-eel acetylcholinesterase and rat-tail-tendon collagen. Eur J Biochem. 1979 Feb 15;94(1):25–29. doi: 10.1111/j.1432-1033.1979.tb12867.x. [DOI] [PubMed] [Google Scholar]
- Arnon R., Espinoza-Ortega B., Tarrab-Hazdai R. Acetylcholinesterase of Schistosoma mansoni--an antigen of functional implications. Mem Inst Oswaldo Cruz. 1987;82 (Suppl 4):163–170. doi: 10.1590/s0074-02761987000800028. [DOI] [PubMed] [Google Scholar]
- Arnon R. Immuno-parasitological parameters in schistosomiasis--a perspective view of a vaccine-oriented immunochemist. Vaccine. 1991 Jun;9(6):379–394. doi: 10.1016/0264-410x(91)90123-n. [DOI] [PubMed] [Google Scholar]
- Auld V. J., Fetter R. D., Broadie K., Goodman C. S. Gliotactin, a novel transmembrane protein on peripheral glia, is required to form the blood-nerve barrier in Drosophila. Cell. 1995 Jun 2;81(5):757–767. doi: 10.1016/0092-8674(95)90537-5. [DOI] [PubMed] [Google Scholar]
- Axelsen P. H., Harel M., Silman I., Sussman J. L. Structure and dynamics of the active site gorge of acetylcholinesterase: synergistic use of molecular dynamics simulation and X-ray crystallography. Protein Sci. 1994 Feb;3(2):188–197. doi: 10.1002/pro.5560030204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BUEDING E. Acetylcholinesterase activity of Schistosoma mansoni. Br J Pharmacol Chemother. 1952 Dec;7(4):563–566. doi: 10.1111/j.1476-5381.1952.tb00722.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barker L. R., Bueding E., Timms A. R. The possible role of acetylcholine in Schistosoma mansoni. Br J Pharmacol Chemother. 1966 Mar;26(3):656–665. doi: 10.1111/j.1476-5381.1966.tb01845.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barthalay Y., Hipeau-Jacquotte R., de la Escalera S., Jiménez F., Piovant M. Drosophila neurotactin mediates heterophilic cell adhesion. EMBO J. 1990 Nov;9(11):3603–3609. doi: 10.1002/j.1460-2075.1990.tb07571.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Botti S. A., Felder C. E., Sussman J. L., Silman I. Electrotactins: a class of adhesion proteins with conserved electrostatic and structural motifs. Protein Eng. 1998 Jun;11(6):415–420. doi: 10.1093/protein/11.6.415. [DOI] [PubMed] [Google Scholar]
- Bueding E., Liu C. L., Rogers S. H. Inhibition by metrifonate and dichlorvos of cholinesterases in schistosomes. Br J Pharmacol. 1972 Nov;46(3):480–487. doi: 10.1111/j.1476-5381.1972.tb08145.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Camacho M., Agnew A. Schistosoma: rate of glucose import is altered by acetylcholine interaction with tegumental acetylcholine receptors and acetylcholinesterase. Exp Parasitol. 1995 Dec;81(4):584–591. doi: 10.1006/expr.1995.1152. [DOI] [PubMed] [Google Scholar]
- Camacho M., Alsford S., Agnew A. Molecular forms of tegumental and muscle acetylcholinesterases of Schistosoma. Parasitology. 1996 Feb;112(Pt 2):199–204. doi: 10.1017/s0031182000084766. [DOI] [PubMed] [Google Scholar]
- Camacho M., Tarrab-Hazdai R., Espinoza B., Arnon R., Agnew A. The amount of acetylcholinesterase on the parasite surface reflects the differential sensitivity of schistosome species to metrifonate. Parasitology. 1994 Feb;108(Pt 2):153–160. doi: 10.1017/s0031182000068244. [DOI] [PubMed] [Google Scholar]
- Casanueva O. I., García-Huidobro T., Campos E. O., Aldunate R., Garrido J., Inestrosa N. C. A major portion of synaptic basal lamina acetylcholinesterase is detached by high salt- and heparin-containing buffers from rat diaphragm muscle and Torpedo electric organ. J Biol Chem. 1998 Feb 13;273(7):4258–4265. doi: 10.1074/jbc.273.7.4258. [DOI] [PubMed] [Google Scholar]
- Casida J. E., Quistad G. B. Golden age of insecticide research: past, present, or future? Annu Rev Entomol. 1998;43:1–16. doi: 10.1146/annurev.ento.43.1.1. [DOI] [PubMed] [Google Scholar]
- Darboux I., Barthalay Y., Piovant M., Hipeau-Jacquotte R. The structure-function relationships in Drosophila neurotactin show that cholinesterasic domains may have adhesive properties. EMBO J. 1996 Sep 16;15(18):4835–4843. [PMC free article] [PubMed] [Google Scholar]
- Deprez P. N., Inestrosa N. C. Two heparin-binding domains are present on the collagenic tail of asymmetric acetylcholinesterase. J Biol Chem. 1995 May 12;270(19):11043–11046. doi: 10.1074/jbc.270.19.11043. [DOI] [PubMed] [Google Scholar]
- Dougherty D. A., Stauffer D. A. Acetylcholine binding by a synthetic receptor: implications for biological recognition. Science. 1990 Dec 14;250(4987):1558–1560. doi: 10.1126/science.2274786. [DOI] [PubMed] [Google Scholar]
- Dudai Y., Silman I. Affinity chromatography of acetylcholinesterase. Methods Enzymol. 1974;34:571–580. doi: 10.1016/s0076-6879(74)34076-1. [DOI] [PubMed] [Google Scholar]
- Espinoza B., Parizade M., Ortega E., Tarrab-Hazdai R., Zilberg D., Arnon R. Monoclonal antibodies against acetylcholinesterase of Schistosoma mansoni: production and characterization. Hybridoma. 1995 Dec;14(6):577–586. doi: 10.1089/hyb.1995.14.577. [DOI] [PubMed] [Google Scholar]
- Espinoza B., Silman I., Arnon R., Tarrab-Hazdai R. Phosphatidylinositol-specific phospholipase C induces biosynthesis of acetylcholinesterase via diacylglycerol in Schistosoma mansoni. Eur J Biochem. 1991 Feb 14;195(3):863–870. doi: 10.1111/j.1432-1033.1991.tb15776.x. [DOI] [PubMed] [Google Scholar]
- Espinoza B., Tarrab-Hazdai R., Himmeloch S., Arnon R. Acetylcholinesterase from Schistosoma mansoni: immunological characterization. Immunol Lett. 1991 May;28(2):167–174. doi: 10.1016/0165-2478(91)90116-r. [DOI] [PubMed] [Google Scholar]
- Espinoza B., Tarrab-Hazdai R., Silman I., Arnon R. Acetylcholinesterase in Schistosoma mansoni is anchored to the membrane via covalently attached phosphatidylinositol. Mol Biochem Parasitol. 1988 Jun;29(2-3):171–179. doi: 10.1016/0166-6851(88)90072-2. [DOI] [PubMed] [Google Scholar]
- Ferguson M. A., Williams A. F. Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures. Annu Rev Biochem. 1988;57:285–320. doi: 10.1146/annurev.bi.57.070188.001441. [DOI] [PubMed] [Google Scholar]
- Fisher A., Brandeis R., Chapman S., Pittel Z., Michaelson D. M. M1 muscarinic agonist treatment reverses cognitive and cholinergic impairments of apolipoprotein E-deficient mice. J Neurochem. 1998 May;70(5):1991–1997. doi: 10.1046/j.1471-4159.1998.70051991.x. [DOI] [PubMed] [Google Scholar]
- Fripp P. J. Histochemical localization of esterase activity in Schistosomes. Exp Parasitol. 1967 Dec;21(3):380–390. doi: 10.1016/0014-4894(67)90098-7. [DOI] [PubMed] [Google Scholar]
- George S. T., Balasubramanian A. S. The aryl acylamidases and their relationship to cholinesterases in human serum, erythrocyte and liver. Eur J Biochem. 1981 Dec;121(1):177–186. doi: 10.1111/j.1432-1033.1981.tb06447.x. [DOI] [PubMed] [Google Scholar]
- Goldlust A., Arnon R., Silman I., Tarrab-Hazdai R. Acetylcholinesterase of Schistosoma mansoni: purification and characterization. J Neurosci Res. 1986;15(4):569–581. doi: 10.1002/jnr.490150413. [DOI] [PubMed] [Google Scholar]
- Harel M., Schalk I., Ehret-Sabatier L., Bouet F., Goeldner M., Hirth C., Axelsen P. H., Silman I., Sussman J. L. Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9031–9035. doi: 10.1073/pnas.90.19.9031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hillman G. R., Senft A. W., Gibler W. B. The mode of action of hycanthone revisited. J Parasitol. 1978 Aug;64(4):754–756. [PubMed] [Google Scholar]
- Hussein A. S., Grigg M. E., Selkirk M. E. Nippostrongylus brasiliensis: characterisation of a somatic amphiphilic acetylcholinesterase with properties distinct from the secreted enzymes. Exp Parasitol. 1999 Feb;91(2):144–150. doi: 10.1006/expr.1998.4360. [DOI] [PubMed] [Google Scholar]
- Ichtchenko K., Hata Y., Nguyen T., Ullrich B., Missler M., Moomaw C., Südhof T. C. Neuroligin 1: a splice site-specific ligand for beta-neurexins. Cell. 1995 May 5;81(3):435–443. doi: 10.1016/0092-8674(95)90396-8. [DOI] [PubMed] [Google Scholar]
- Inestrosa N. C., Perelman A. Association of acetylcholinesterase with the cell surface. J Membr Biol. 1990 Oct;118(1):1–9. doi: 10.1007/BF01872200. [DOI] [PubMed] [Google Scholar]
- Krejci E., Duval N., Chatonnet A., Vincens P., Massoulié J. Cholinesterase-like domains in enzymes and structural proteins: functional and evolutionary relationships and identification of a catalytically essential aspartic acid. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6647–6651. doi: 10.1073/pnas.88.15.6647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Layer P. G. Comparative localization of acetylcholinesterase and pseudocholinesterase during morphogenesis of the chicken brain. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6413–6417. doi: 10.1073/pnas.80.20.6413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Layer P. G., Rommel S., Bülthoff H., Hengstenberg R. Independent spatial waves of biochemical differentiation along the surface of chicken brain as revealed by the sequential expression of acetylcholinesterase. Cell Tissue Res. 1988 Mar;251(3):587–595. doi: 10.1007/BF00214007. [DOI] [PubMed] [Google Scholar]
- Levi-Schaffer F., Tarrab-Hazdai R., Meshulam H., Arnon R. Effect of phosphonium salts and phosphoranes on the acetylcholinesterase activity and on the viability of Schistosoma mansoni parasites. Int J Immunopharmacol. 1984;6(6):619–627. doi: 10.1016/0192-0561(84)90073-0. [DOI] [PubMed] [Google Scholar]
- Levi-Schaffer F., Tarrab-Hazdai R., Schryer M. D., Arnon R., Smolarsky M. Isolation and partial characterization of the tegumental outer membrane of schistosomula of Schistosoma mansoni. Mol Biochem Parasitol. 1984 Nov;13(3):283–300. doi: 10.1016/0166-6851(84)90120-8. [DOI] [PubMed] [Google Scholar]
- Low M. G. Biochemistry of the glycosyl-phosphatidylinositol membrane protein anchors. Biochem J. 1987 May 15;244(1):1–13. doi: 10.1042/bj2440001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin R. J. Modes of action of anthelmintic drugs. Vet J. 1997 Jul;154(1):11–34. doi: 10.1016/s1090-0233(05)80005-x. [DOI] [PubMed] [Google Scholar]
- Massoulié J., Anselmet A., Bon S., Krejci E., Legay C., Morel N., Simon S. Acetylcholinesterase: C-terminal domains, molecular forms and functional localization. J Physiol Paris. 1998 Jun-Aug;92(3-4):183–190. doi: 10.1016/s0928-4257(98)80007-7. [DOI] [PubMed] [Google Scholar]
- Massoulié J., Bon S. The molecular forms of cholinesterase and acetylcholinesterase in vertebrates. Annu Rev Neurosci. 1982;5:57–106. doi: 10.1146/annurev.ne.05.030182.000421. [DOI] [PubMed] [Google Scholar]
- Massoulié J., Pezzementi L., Bon S., Krejci E., Vallette F. M. Molecular and cellular biology of cholinesterases. Prog Neurobiol. 1993 Jul;41(1):31–91. doi: 10.1016/0301-0082(93)90040-y. [DOI] [PubMed] [Google Scholar]
- Millard C. B., Kryger G., Ordentlich A., Greenblatt H. M., Harel M., Raves M. L., Segall Y., Barak D., Shafferman A., Silman I. Crystal structures of aged phosphonylated acetylcholinesterase: nerve agent reaction products at the atomic level. Biochemistry. 1999 Jun 1;38(22):7032–7039. doi: 10.1021/bi982678l. [DOI] [PubMed] [Google Scholar]
- Nolte H. J., Rosenberry T. L., Neumann E. Effective charge on acetylcholinesterase active sites determined from the ionic strength dependence of association rate constants with cationic ligands. Biochemistry. 1980 Aug 5;19(16):3705–3711. doi: 10.1021/bi00557a011. [DOI] [PubMed] [Google Scholar]
- Nordgren I., Bengtsson E., Holmstedt B., Pettersson B. M. Levels of metrifonate and dichlorvos in plasma and erythrocytes during treatment of schistosomiasis with Bilarcil. Acta Pharmacol Toxicol (Copenh) 1981;49 (Suppl 5):79–86. doi: 10.1111/j.1600-0773.1981.tb03256.x. [DOI] [PubMed] [Google Scholar]
- Ollis D. L., Cheah E., Cygler M., Dijkstra B., Frolow F., Franken S. M., Harel M., Remington S. J., Silman I., Schrag J. The alpha/beta hydrolase fold. Protein Eng. 1992 Apr;5(3):197–211. doi: 10.1093/protein/5.3.197. [DOI] [PubMed] [Google Scholar]
- Olson P. F., Fessler L. I., Nelson R. E., Sterne R. E., Campbell A. G., Fessler J. H. Glutactin, a novel Drosophila basement membrane-related glycoprotein with sequence similarity to serine esterases. EMBO J. 1990 Apr;9(4):1219–1227. doi: 10.1002/j.1460-2075.1990.tb08229.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pax R. A., Bennett J. L. Neurobiology of parasitic platyhelminths: possible solutions to the problems of correlating structure with function. Parasitology. 1991;102 (Suppl):S31–S39. doi: 10.1017/s0031182000073273. [DOI] [PubMed] [Google Scholar]
- Pax R. A., Siefker C., Hickox T., Bennett J. L. Schistosoma mansoni: neurotransmitters, longitudinal musculature and effects of electrical stimulation. Exp Parasitol. 1981 Dec;52(3):346–355. doi: 10.1016/0014-4894(81)90092-8. [DOI] [PubMed] [Google Scholar]
- Ramírez G., Barat A., Fernández H. L. Interaction of asymmetric and globular acetylcholinesterase species with glycosaminoglycans. J Neurochem. 1990 May;54(5):1761–1768. doi: 10.1111/j.1471-4159.1990.tb01231.x. [DOI] [PubMed] [Google Scholar]
- Rapson E. B., Chilwan A. S., Jenkins D. C. Acetylcholinesterase secretion--a parameter for the interpretation of in vitro anthelmintic screens. Parasitology. 1986 Apr;92(Pt 2):425–430. doi: 10.1017/s0031182000064180. [DOI] [PubMed] [Google Scholar]
- Rathaur S., Müller S., Maizels R. M., Walter R. D. Identification of circulating parasite acetylcholinesterase in human and rodent filariasis. Parasitol Res. 1992;78(8):671–676. doi: 10.1007/BF00931519. [DOI] [PubMed] [Google Scholar]
- Silman I., Futerman A. H. Modes of attachment of acetylcholinesterase to the surface membrane. Eur J Biochem. 1987 Dec 30;170(1-2):11–22. doi: 10.1111/j.1432-1033.1987.tb13662.x. [DOI] [PubMed] [Google Scholar]
- Sine J. P., Toutant J. P., Colas B. Butyrylcholinesterase amphiphilic forms of the mucosal cells of rat intestine bind heparin. Biochem Biophys Res Commun. 1994 Jun 30;201(3):1376–1381. doi: 10.1006/bbrc.1994.1855. [DOI] [PubMed] [Google Scholar]
- Sukhdeo S. C., Sangster N. C., Mettrick D. F. Effects of cholinergic drugs on longitudinal muscle contractions of Fasciola hepatica. J Parasitol. 1986 Dec;72(6):858–864. [PubMed] [Google Scholar]
- Sussman J. L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science. 1991 Aug 23;253(5022):872–879. doi: 10.1126/science.1678899. [DOI] [PubMed] [Google Scholar]
- Sussman J. L., Harel M., Frolow F., Varon L., Toker L., Futerman A. H., Silman I. Purification and crystallization of a dimeric form of acetylcholinesterase from Torpedo californica subsequent to solubilization with phosphatidylinositol-specific phospholipase C. J Mol Biol. 1988 Oct 5;203(3):821–823. doi: 10.1016/0022-2836(88)90213-6. [DOI] [PubMed] [Google Scholar]
- Talesa V., Grauso M., Giovannini E., Rosi G., Toutant J. P. Acetylcholinesterase in tentacles of Octopus vulgaris (Cephalopoda). Histochemical localization and characterization of a specific high salt-soluble and heparin-soluble fraction of globular forms. Neurochem Int. 1995 Aug;27(2):201–211. doi: 10.1016/0197-0186(95)00006-t. [DOI] [PubMed] [Google Scholar]
- Talesa V., Romani R., Grauso M., Rosi G., Giovannini E. Expression of a single dimeric membrane-bound acetylcholinesterase in Parascaris equorum. Parasitology. 1997 Dec;115(Pt 6):653–660. doi: 10.1017/s0031182097001662. [DOI] [PubMed] [Google Scholar]
- Tarrab-Hazdai R., Levi-Schaffer F., Gonzales G., Arnon R. Acetylcholinesterase of Schistosoma mansoni. Molecular forms of the solubilized enzyme. Biochim Biophys Acta. 1984 Oct 9;790(1):61–69. doi: 10.1016/0167-4838(84)90332-7. [DOI] [PubMed] [Google Scholar]
- Tarrab-Hazdai R., Levi-Schaffer F., Smolarsky M., Arnon R. Acetylcholinesterase of Schistosoma mansoni: antigenic cross-reactivity with Electrophorus electricus and its functional implications. Eur J Immunol. 1984 Mar;14(3):205–209. doi: 10.1002/eji.1830140302. [DOI] [PubMed] [Google Scholar]
- Viratelle O. M., Bernhard S. A. Major component of acetylcholinesterase in Torpedo electroplax is not basal lamina associated. Biochemistry. 1980 Oct 28;19(22):4999–5007. doi: 10.1021/bi00563a011. [DOI] [PubMed] [Google Scholar]
- Weise C., Kreienkamp H. J., Raba R., Pedak A., Aaviksaar A., Hucho F. Anionic subsites of the acetylcholinesterase from Torpedo californica: affinity labelling with the cationic reagent N,N-dimethyl-2-phenyl-aziridinium. EMBO J. 1990 Dec;9(12):3885–3888. doi: 10.1002/j.1460-2075.1990.tb07607.x. [DOI] [PMC free article] [PubMed] [Google Scholar]