Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Dec;8(12):2672–2685. doi: 10.1110/ps.8.12.2672

Structural and functional consequences of the presence of a fourth disulfide bridge in the scorpion short toxins: solution structure of the potassium channel inhibitor HsTX1.

P Savarin 1, R Romi-Lebrun 1, S Zinn-Justin 1, B Lebrun 1, T Nakajima 1, B Gilquin 1, A Menez 1
PMCID: PMC2144240  PMID: 10631983

Abstract

We have determined the three-dimensional structure of the potassium channel inhibitor HsTX1, using nuclear magnetic resonance and molecular modeling. This protein belongs to the scorpion short toxin family, which essentially contains potassium channel blockers of 29 to 39 amino acids and three disulfide bridges. It is highly active on voltage-gated Kv1.3 potassium channels. Furthermore, it has the particularity to possess a fourth disulfide bridge. We show that HsTX1 has a fold similar to that of the three-disulfide-bridged toxins and conserves the hydrophobic core found in the scorpion short toxins. Thus, the fourth bridge has no influence on the global conformation of HsTX1. Most residues spatially analogous to those interacting with voltage-gated potassium channels in the three-disulfide-bridged toxins are conserved in HsTX1. Thus, we propose that Tyr21, Lys23, Met25, and Asn26 are involved in the biological activity of HsTX1. As an additional positively charged residue is always spatially close to the aromatic residue in toxins blocking the voltage-gated potassium channels, and as previous mutagenesis experiments have shown the critical role played by the C-terminus in HsTX1, we suggest that Arg33 is also important for the activity of the four disulfide-bridged toxin. Docking calculations confirm that, if Lys23 and Met25 interact with the GYGDMH motif of Kv1.3, Arg33 can contact Asp386 and, thus, play the role of the additional positively charged residue of the toxin functional site. This original configuration of the binding site of HsTX1 for Kv1.3, if confirmed experimentally, offers new structural possibilities for the construction of a molecule blocking the voltage-gated potassium channels.

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiyar J., Rizzi J. P., Gutman G. A., Chandy K. G. The signature sequence of voltage-gated potassium channels projects into the external vestibule. J Biol Chem. 1996 Dec 6;271(49):31013–31016. doi: 10.1074/jbc.271.49.31013. [DOI] [PubMed] [Google Scholar]
  2. Aiyar J., Withka J. M., Rizzi J. P., Singleton D. H., Andrews G. C., Lin W., Boyd J., Hanson D. C., Simon M., Dethlefs B. Topology of the pore-region of a K+ channel revealed by the NMR-derived structures of scorpion toxins. Neuron. 1995 Nov;15(5):1169–1181. doi: 10.1016/0896-6273(95)90104-3. [DOI] [PubMed] [Google Scholar]
  3. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  4. Blanc E., Fremont V., Sizun P., Meunier S., Van Rietschoten J., Thevand A., Bernassau J. M., Darbon H. Solution structure of P01, a natural scorpion peptide structurally analogous to scorpion toxins specific for apamin-sensitive potassium channel. Proteins. 1996 Mar;24(3):359–369. doi: 10.1002/(SICI)1097-0134(199603)24:3<359::AID-PROT9>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  5. Blanc E., Lecomte C., Rietschoten J. V., Sabatier J. M., Darbon H. Solution structure of TsKapa, a charybdotoxin-like scorpion toxin from Tityus serrulatus with high affinity for apamin-sensitive Ca(2+)-activated K+ channels. Proteins. 1997 Nov;29(3):359–369. doi: 10.1002/(sici)1097-0134(199711)29:3<359::aid-prot9>3.0.co;2-5. [DOI] [PubMed] [Google Scholar]
  6. Blanc E., Romi-Lebrun R., Bornet O., Nakajima T., Darbon H. Solution structure of two new toxins from the venom of the Chinese scorpion Buthus martensi Karsch blockers of potassium channels. Biochemistry. 1998 Sep 8;37(36):12412–12418. doi: 10.1021/bi9809371. [DOI] [PubMed] [Google Scholar]
  7. Blanc E., Sabatier J. M., Kharrat R., Meunier S., el Ayeb M., Van Rietschoten J., Darbon H. Solution structure of maurotoxin, a scorpion toxin from Scorpio maurus, with high affinity for voltage-gated potassium channels. Proteins. 1997 Nov;29(3):321–333. [PubMed] [Google Scholar]
  8. Bontems F., Gilquin B., Roumestand C., Ménez A., Toma F. Analysis of side-chain organization on a refined model of charybdotoxin: structural and functional implications. Biochemistry. 1992 Sep 1;31(34):7756–7764. doi: 10.1021/bi00149a003. [DOI] [PubMed] [Google Scholar]
  9. Bontems F., Roumestand C., Gilquin B., Ménez A., Toma F. Refined structure of charybdotoxin: common motifs in scorpion toxins and insect defensins. Science. 1991 Dec 6;254(5037):1521–1523. doi: 10.1126/science.1720574. [DOI] [PubMed] [Google Scholar]
  10. Buisine E., Wieruszeski J. M., Lippens G., Wouters D., Tartar A., Sautiere P. Characterization of a new family of toxin-like peptides from the venom of the scorpion Leiurus quinquestriatus hebraeus. 1H-NMR structure of leiuropeptide II. J Pept Res. 1997 Jun;49(6):545–555. doi: 10.1111/j.1399-3011.1997.tb01162.x. [DOI] [PubMed] [Google Scholar]
  11. Chicchi G. G., Gimenez-Gallego G., Ber E., Garcia M. L., Winquist R., Cascieri M. A. Purification and characterization of a unique, potent inhibitor of apamin binding from Leiurus quinquestriatus hebraeus venom. J Biol Chem. 1988 Jul 25;263(21):10192–10197. [PubMed] [Google Scholar]
  12. Cornet B., Bonmatin J. M., Hetru C., Hoffmann J. A., Ptak M., Vovelle F. Refined three-dimensional solution structure of insect defensin A. Structure. 1995 May 15;3(5):435–448. doi: 10.1016/s0969-2126(01)00177-0. [DOI] [PubMed] [Google Scholar]
  13. Crest M., Jacquet G., Gola M., Zerrouk H., Benslimane A., Rochat H., Mansuelle P., Martin-Eauclaire M. F. Kaliotoxin, a novel peptidyl inhibitor of neuronal BK-type Ca(2+)-activated K+ channels characterized from Androctonus mauretanicus mauretanicus venom. J Biol Chem. 1992 Jan 25;267(3):1640–1647. [PubMed] [Google Scholar]
  14. Dauplais M., Gilquin B., Possani L. D., Gurrola-Briones G., Roumestand C., Ménez A. Determination of the three-dimensional solution structure of noxiustoxin: analysis of structural differences with related short-chain scorpion toxins. Biochemistry. 1995 Dec 26;34(51):16563–16573. doi: 10.1021/bi00051a004. [DOI] [PubMed] [Google Scholar]
  15. Dauplais M., Lecoq A., Song J., Cotton J., Jamin N., Gilquin B., Roumestand C., Vita C., de Medeiros C. L., Rowan E. G. On the convergent evolution of animal toxins. Conservation of a diad of functional residues in potassium channel-blocking toxins with unrelated structures. J Biol Chem. 1997 Feb 14;272(7):4302–4309. doi: 10.1074/jbc.272.7.4302. [DOI] [PubMed] [Google Scholar]
  16. Delepierre M., Prochnicka-Chalufour A., Possani L. D. A novel potassium channel blocking toxin from the scorpion Pandinus imperator: A 1H NMR analysis using a nano-NMR probe. Biochemistry. 1997 Mar 4;36(9):2649–2658. doi: 10.1021/bi9617116. [DOI] [PubMed] [Google Scholar]
  17. Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
  18. Gairí M., Romi R., Fernández I., Rochat H., Martin-Eauclaire M. F., Van Rietschoten J., Pons M., Giralt E. 3D structure of kaliotoxin: is residue 34 a key for channel selectivity? J Pept Sci. 1997 Jul-Aug;3(4):314–319. doi: 10.1002/(SICI)1099-1387(199707)3:4%3C314::AID-PSC117%3E3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  19. Galvez A., Gimenez-Gallego G., Reuben J. P., Roy-Contancin L., Feigenbaum P., Kaczorowski G. J., Garcia M. L. Purification and characterization of a unique, potent, peptidyl probe for the high conductance calcium-activated potassium channel from venom of the scorpion Buthus tamulus. J Biol Chem. 1990 Jul 5;265(19):11083–11090. [PubMed] [Google Scholar]
  20. Garcia-Calvo M., Leonard R. J., Novick J., Stevens S. P., Schmalhofer W., Kaczorowski G. J., Garcia M. L. Purification, characterization, and biosynthesis of margatoxin, a component of Centruroides margaritatus venom that selectively inhibits voltage-dependent potassium channels. J Biol Chem. 1993 Sep 5;268(25):18866–18874. [PubMed] [Google Scholar]
  21. Garcia M. L., Garcia-Calvo M., Hidalgo P., Lee A., MacKinnon R. Purification and characterization of three inhibitors of voltage-dependent K+ channels from Leiurus quinquestriatus var. hebraeus venom. Biochemistry. 1994 Jun 7;33(22):6834–6839. doi: 10.1021/bi00188a012. [DOI] [PubMed] [Google Scholar]
  22. Gilquin B., Lecoq A., Desné F., Guenneugues M., Zinn-Justin S., Ménez A. Conformational and functional variability supported by the BPTI fold: solution structure of the Ca2+ channel blocker calcicludine. Proteins. 1999 Mar 1;34(4):520–532. [PubMed] [Google Scholar]
  23. Gimenez-Gallego G., Navia M. A., Reuben J. P., Katz G. M., Kaczorowski G. J., Garcia M. L. Purification, sequence, and model structure of charybdotoxin, a potent selective inhibitor of calcium-activated potassium channels. Proc Natl Acad Sci U S A. 1988 May;85(10):3329–3333. doi: 10.1073/pnas.85.10.3329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Goldstein S. A., Pheasant D. J., Miller C. The charybdotoxin receptor of a Shaker K+ channel: peptide and channel residues mediating molecular recognition. Neuron. 1994 Jun;12(6):1377–1388. doi: 10.1016/0896-6273(94)90452-9. [DOI] [PubMed] [Google Scholar]
  25. Gómez-Lagunas F., Olamendi-Portugal T., Zamudio F. Z., Possani L. D. Two novel toxins from the venom of the scorpion Pandinus imperator show that the N-terminal amino acid sequence is important for their affinities towards Shaker B K+ channels. J Membr Biol. 1996 Jul;152(1):49–56. doi: 10.1007/s002329900084. [DOI] [PubMed] [Google Scholar]
  26. Hidalgo P., MacKinnon R. Revealing the architecture of a K+ channel pore through mutant cycles with a peptide inhibitor. Science. 1995 Apr 14;268(5208):307–310. doi: 10.1126/science.7716527. [DOI] [PubMed] [Google Scholar]
  27. Hyberts S. G., Märki W., Wagner G. Stereospecific assignments of side-chain protons and characterization of torsion angles in Eglin c. Eur J Biochem. 1987 May 4;164(3):625–635. doi: 10.1111/j.1432-1033.1987.tb11173.x. [DOI] [PubMed] [Google Scholar]
  28. Kharrat R., Mabrouk K., Crest M., Darbon H., Oughideni R., Martin-Eauclaire M. F., Jacquet G., el Ayeb M., Van Rietschoten J., Rochat H. Chemical synthesis and characterization of maurotoxin, a short scorpion toxin with four disulfide bridges that acts on K+ channels. Eur J Biochem. 1996 Dec 15;242(3):491–498. doi: 10.1111/j.1432-1033.1996.0491r.x. [DOI] [PubMed] [Google Scholar]
  29. Kharrat R., Mansuelle P., Sampieri F., Crest M., Oughideni R., Van Rietschoten J., Martin-Eauclaire M. F., Rochat H., El Ayeb M. Maurotoxin, a four disulfide bridge toxin from Scorpio maurus venom: purification, structure and action on potassium channels. FEBS Lett. 1997 Apr 14;406(3):284–290. doi: 10.1016/s0014-5793(97)00285-8. [DOI] [PubMed] [Google Scholar]
  30. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  31. Koschak A., Bugianesi R. M., Mitterdorfer J., Kaczorowski G. J., Garcia M. L., Knaus H. G. Subunit composition of brain voltage-gated potassium channels determined by hongotoxin-1, a novel peptide derived from Centruroides limbatus venom. J Biol Chem. 1998 Jan 30;273(5):2639–2644. doi: 10.1074/jbc.273.5.2639. [DOI] [PubMed] [Google Scholar]
  32. Krezel A. M., Kasibhatla C., Hidalgo P., MacKinnon R., Wagner G. Solution structure of the potassium channel inhibitor agitoxin 2: caliper for probing channel geometry. Protein Sci. 1995 Aug;4(8):1478–1489. doi: 10.1002/pro.5560040805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kumar A., Ernst R. R., Wüthrich K. A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. Biochem Biophys Res Commun. 1980 Jul 16;95(1):1–6. doi: 10.1016/0006-291x(80)90695-6. [DOI] [PubMed] [Google Scholar]
  34. Laraba-Djebari F., Legros C., Crest M., Céard B., Romi R., Mansuelle P., Jacquet G., van Rietschoten J., Gola M., Rochat H. The kaliotoxin family enlarged. Purification, characterization, and precursor nucleotide sequence of KTX2 from Androctonus australis venom. J Biol Chem. 1994 Dec 30;269(52):32835–32843. [PubMed] [Google Scholar]
  35. Laskowski R. A., Rullmannn J. A., MacArthur M. W., Kaptein R., Thornton J. M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR. 1996 Dec;8(4):477–486. doi: 10.1007/BF00228148. [DOI] [PubMed] [Google Scholar]
  36. Lebrun B., Romi-Lebrun R., Martin-Eauclaire M. F., Yasuda A., Ishiguro M., Oyama Y., Pongs O., Nakajima T. A four-disulphide-bridged toxin, with high affinity towards voltage-gated K+ channels, isolated from Heterometrus spinnifer (Scorpionidae) venom. Biochem J. 1997 Nov 15;328(Pt 1):321–327. doi: 10.1042/bj3280321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Legros C., Oughuideni R., Darbon H., Rochat H., Bougis P. E., Martin-Eauclaire M. F. Characterization of a new peptide from Tityus serrulatus scorpion venom which is a ligand of the apamin-binding site. FEBS Lett. 1996 Jul 15;390(1):81–84. doi: 10.1016/0014-5793(96)00616-3. [DOI] [PubMed] [Google Scholar]
  38. Lucchesi K., Ravindran A., Young H., Moczydlowski E. Analysis of the blocking activity of charybdotoxin homologs and iodinated derivatives against Ca2+-activated K+ channels. J Membr Biol. 1989 Aug;109(3):269–281. doi: 10.1007/BF01870284. [DOI] [PubMed] [Google Scholar]
  39. Martin B. M., Ramirez A. N., Gurrola G. B., Nobile M., Prestipino G., Possani L. D. Novel K(+)-channel-blocking toxins from the venom of the scorpion Centruroides limpidus limpidus Karsch. Biochem J. 1994 Nov 15;304(Pt 1):51–56. doi: 10.1042/bj3040051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Martins J. C., Van de Ven F. J., Borremans F. A. Determination of the three-dimensional solution structure of scyllatoxin by 1H nuclear magnetic resonance. J Mol Biol. 1995 Nov 3;253(4):590–603. doi: 10.1006/jmbi.1995.0575. [DOI] [PubMed] [Google Scholar]
  41. Martínez F., Muñoz-Garay C., Gurrola G., Darszon A., Possani L. D., Becerril B. Site directed mutants of Noxiustoxin reveal specific interactions with potassium channels. FEBS Lett. 1998 Jun 16;429(3):381–384. doi: 10.1016/s0014-5793(98)00636-x. [DOI] [PubMed] [Google Scholar]
  42. Meunier S., Bernassau J. M., Sabatier J. M., Martin-Eauclaire M. F., Van Rietschoten J., Cambillau C., Darbon H. Solution structure of P05-NH2, a scorpion toxin analog with high affinity for the apamin-sensitive potassium channel. Biochemistry. 1993 Nov 16;32(45):11969–11976. doi: 10.1021/bi00096a005. [DOI] [PubMed] [Google Scholar]
  43. Miller C. The charybdotoxin family of K+ channel-blocking peptides. Neuron. 1995 Jul;15(1):5–10. doi: 10.1016/0896-6273(95)90057-8. [DOI] [PubMed] [Google Scholar]
  44. Naranjo D., Miller C. A strongly interacting pair of residues on the contact surface of charybdotoxin and a Shaker K+ channel. Neuron. 1996 Jan;16(1):123–130. doi: 10.1016/s0896-6273(00)80029-x. [DOI] [PubMed] [Google Scholar]
  45. Nieto A. R., Gurrola G. B., Vaca L., Possani L. D. Noxiustoxin 2, a novel K+ channel blocking peptide from the venom of the scorpion Centruroides noxius Hoffmann. Toxicon. 1996 Aug;34(8):913–922. doi: 10.1016/0041-0101(96)00029-3. [DOI] [PubMed] [Google Scholar]
  46. Nilges M., Macias M. J., O'Donoghue S. I., Oschkinat H. Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from beta-spectrin. J Mol Biol. 1997 Jun 13;269(3):408–422. doi: 10.1006/jmbi.1997.1044. [DOI] [PubMed] [Google Scholar]
  47. Olamendi-Portugal T., Gómez-Lagunas F., Gurrola G. B., Possani L. D. A novel structural class of K+-channel blocking toxin from the scorpion Pandinus imperator. Biochem J. 1996 May 1;315(Pt 3):977–981. doi: 10.1042/bj3150977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Olamendi-Portugal T., Gómez-Lagunas F., Gurrola G. B., Possani L. D. Two similar peptides from the venom of the scorpion Pandinus imperator, one highly effective blocker and the other inactive on K+ channels. Toxicon. 1998 May;36(5):759–770. doi: 10.1016/s0041-0101(97)00163-3. [DOI] [PubMed] [Google Scholar]
  49. Pardi A., Billeter M., Wüthrich K. Calibration of the angular dependence of the amide proton-C alpha proton coupling constants, 3JHN alpha, in a globular protein. Use of 3JHN alpha for identification of helical secondary structure. J Mol Biol. 1984 Dec 15;180(3):741–751. doi: 10.1016/0022-2836(84)90035-4. [DOI] [PubMed] [Google Scholar]
  50. Piotto M., Saudek V., Sklenár V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR. 1992 Nov;2(6):661–665. doi: 10.1007/BF02192855. [DOI] [PubMed] [Google Scholar]
  51. Rance M., Sørensen O. W., Bodenhausen G., Wagner G., Ernst R. R., Wüthrich K. Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. Biochem Biophys Res Commun. 1983 Dec 16;117(2):479–485. doi: 10.1016/0006-291x(83)91225-1. [DOI] [PubMed] [Google Scholar]
  52. Ranganathan R., Lewis J. H., MacKinnon R. Spatial localization of the K+ channel selectivity filter by mutant cycle-based structure analysis. Neuron. 1996 Jan;16(1):131–139. doi: 10.1016/s0896-6273(00)80030-6. [DOI] [PubMed] [Google Scholar]
  53. Renisio J. G., Lu Z., Blanc E., Jin W., Lewis J. H., Bornet O., Darbon H. Solution structure of potassium channel-inhibiting scorpion toxin Lq2. Proteins. 1999 Mar 1;34(4):417–426. doi: 10.1002/(sici)1097-0134(19990301)34:4<417::aid-prot1>3.0.co;2-r. [DOI] [PubMed] [Google Scholar]
  54. Rogowski R. S., Collins J. H., O'Neill T. J., Gustafson T. A., Werkman T. R., Rogawski M. A., Tenenholz T. C., Weber D. J., Blaustein M. P. Three new toxins from the scorpion Pandinus imperator selectively block certain voltage-gated K+ channels. Mol Pharmacol. 1996 Nov;50(5):1167–1177. [PubMed] [Google Scholar]
  55. Rogowski R. S., Krueger B. K., Collins J. H., Blaustein M. P. Tityustoxin K alpha blocks voltage-gated noninactivating K+ channels and unblocks inactivating K+ channels blocked by alpha-dendrotoxin in synaptosomes. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1475–1479. doi: 10.1073/pnas.91.4.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Romi-Lebrun R., Lebrun B., Martin-Eauclaire M. F., Ishiguro M., Escoubas P., Wu F. Q., Hisada M., Pongs O., Nakajima T. Purification, characterization, and synthesis of three novel toxins from the Chinese scorpion Buthus martensi, which act on K+ channels. Biochemistry. 1997 Nov 4;36(44):13473–13482. doi: 10.1021/bi971044w. [DOI] [PubMed] [Google Scholar]
  57. Romi-Lebrun R., Martin-Eauclaire M. F., Escoubas P., Wu F. Q., Lebrun B., Hisada M., Nakajima T. Characterization of four toxins from Buthus martensi scorpion venom, which act on apamin-sensitive Ca2+-activated K+ channels. Eur J Biochem. 1997 Apr 15;245(2):457–464. doi: 10.1111/j.1432-1033.1997.00457.x. [DOI] [PubMed] [Google Scholar]
  58. Sabatier J. M., Fremont V., Mabrouk K., Crest M., Darbon H., Rochat H., Van Rietschoten J., Martin-Eauclaire M. F. Leiurotoxin I, a scorpion toxin specific for Ca(2+)-activated K+ channels. Structure-activity analysis using synthetic analogs. Int J Pept Protein Res. 1994 May;43(5):486–495. doi: 10.1111/j.1399-3011.1994.tb00548.x. [DOI] [PubMed] [Google Scholar]
  59. Savarin P., Guenneugues M., Gilquin B., Lamthanh H., Gasparini S., Zinn-Justin S., Ménez A. Three-dimensional structure of kappa-conotoxin PVIIA, a novel potassium channel-blocking toxin from cone snails. Biochemistry. 1998 Apr 21;37(16):5407–5416. doi: 10.1021/bi9730341. [DOI] [PubMed] [Google Scholar]
  60. Schneider T. R., Brünger A. T., Nilges M. Influence of internal dynamics on accuracy of protein NMR structures: derivation of realistic model distance data from a long molecular dynamics trajectory. J Mol Biol. 1999 Jan 15;285(2):727–740. doi: 10.1006/jmbi.1998.2323. [DOI] [PubMed] [Google Scholar]
  61. Selisko B., Garcia C., Becerril B., Gómez-Lagunas F., Garay C., Possani L. D. Cobatoxins 1 and 2 from Centruroides noxius Hoffmann constitute a subfamily of potassium-channel-blocking scorpion toxins. Eur J Biochem. 1998 Jun 15;254(3):468–479. doi: 10.1046/j.1432-1327.1998.2540468.x. [DOI] [PubMed] [Google Scholar]
  62. Srinivasan N., Sowdhamini R., Ramakrishnan C., Balaram P. Conformations of disulfide bridges in proteins. Int J Pept Protein Res. 1990 Aug;36(2):147–155. doi: 10.1111/j.1399-3011.1990.tb00958.x. [DOI] [PubMed] [Google Scholar]
  63. Stampe P., Kolmakova-Partensky L., Miller C. Intimations of K+ channel structure from a complete functional map of the molecular surface of charybdotoxin. Biochemistry. 1994 Jan 18;33(2):443–450. doi: 10.1021/bi00168a008. [DOI] [PubMed] [Google Scholar]
  64. Tenenholz T. C., Rogowski R. S., Collins J. H., Blaustein M. P., Weber D. J. Solution structure for Pandinus toxin K-alpha (PiTX-K alpha), a selective blocker of A-type potassium channels. Biochemistry. 1997 Mar 11;36(10):2763–2771. doi: 10.1021/bi9628432. [DOI] [PubMed] [Google Scholar]
  65. Zerrouk H., Laraba-Djebari F., Fremont V., Meki A., Darbon H., Mansuelle P., Oughideni R., van Rietschoten J., Rochat H., Martin-Eauclaire M. F. Characterization of PO1, a new peptide ligand of the apamin-sensitive Ca2+ activated K+ channel. Int J Pept Protein Res. 1996 Dec;48(6):514–521. doi: 10.1111/j.1399-3011.1996.tb00870.x. [DOI] [PubMed] [Google Scholar]
  66. Zerrouk H., Mansuelle P., Benslimane A., Rochat H., Martin-Eauclaire M. F. Characterization of a new leiurotoxin I-like scorpion toxin. PO5 from Androctonus mauretanicus mauretanicus. FEBS Lett. 1993 Apr 12;320(3):189–192. doi: 10.1016/0014-5793(93)80583-g. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES