Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Dec;8(12):2751–2760. doi: 10.1110/ps.8.12.2751

Comparison of the kinetics of S-S bond, secondary structure, and active site formation during refolding of reduced denatured hen egg white lysozyme.

P Roux 1, M Ruoppolo 1, A F Chaffotte 1, M E Goldberg 1
PMCID: PMC2144241  PMID: 10631992

Abstract

To investigate the role of some tertiary interactions, the disulfide bonds, in the early stages of refolding of hen lysozyme, we report the kinetics of reoxidation of denatured and reduced lysozyme under the same refolding conditions as those previously used to investigate the kinetics of regain of its circular dichroism (CD), fluorescence, and activity. At different stages of the refolding, the oxidation of the protein was blocked by alkylation of the free cysteines with iodoacetamide and the various oxidation states present in the samples were identified by electrospray-mass spectrometry. Thus, it was possible to monitor the appearance and/or disappearance of the species with 0 to 4 disulfide bonds. Using a simulation program, these kinetics were compared with those of regain of far-UV CD, fluorescence, and enzymatic activity and were discussed in terms of a refined model for the refolding of reduced hen egg white lysozyme.

Full Text

The Full Text of this article is available as a PDF (77.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acharya A. S., Taniuchi H. A study of renaturation of reduced hen egg white lysozyme. Enzymically active intermediates formed during oxidation of the reduced protein. J Biol Chem. 1976 Nov 25;251(22):6934–6946. [PubMed] [Google Scholar]
  2. Anderson W. L., Wetlaufer D. B. The folding pathway of reduced lysozyme. J Biol Chem. 1976 May 25;251(10):3147–3153. [PubMed] [Google Scholar]
  3. Anfinsen C. B. Principles that govern the folding of protein chains. Science. 1973 Jul 20;181(4096):223–230. doi: 10.1126/science.181.4096.223. [DOI] [PubMed] [Google Scholar]
  4. Blake C. C., Koenig D. F., Mair G. A., North A. C., Phillips D. C., Sarma V. R. Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 Angstrom resolution. Nature. 1965 May 22;206(4986):757–761. doi: 10.1038/206757a0. [DOI] [PubMed] [Google Scholar]
  5. Camacho C. J., Thirumalai D. Modeling the role of disulfide bonds in protein folding: entropic barriers and pathways. Proteins. 1995 May;22(1):27–40. doi: 10.1002/prot.340220105. [DOI] [PubMed] [Google Scholar]
  6. Chaffotte A. F., Guillou Y., Goldberg M. E. Kinetic resolution of peptide bond and side chain far-UV circular dichroism during the folding of hen egg white lysozyme. Biochemistry. 1992 Oct 13;31(40):9694–9702. doi: 10.1021/bi00155a024. [DOI] [PubMed] [Google Scholar]
  7. Chatrenet B., Chang J. Y. The disulfide folding pathway of hirudin elucidated by stop/go folding experiments. J Biol Chem. 1993 Oct 5;268(28):20988–20996. [PubMed] [Google Scholar]
  8. Chau M. H., Nelson J. W. Direct measurement of the equilibrium between glutathione and dithiothreitol by high performance liquid chromatography. FEBS Lett. 1991 Oct 21;291(2):296–298. doi: 10.1016/0014-5793(91)81305-r. [DOI] [PubMed] [Google Scholar]
  9. Creighton T. E. Disulfide bonds as probes of protein folding pathways. Methods Enzymol. 1986;131:83–106. doi: 10.1016/0076-6879(86)31036-x. [DOI] [PubMed] [Google Scholar]
  10. Creighton T. E. Experimental studies of protein folding and unfolding. Prog Biophys Mol Biol. 1978;33(3):231–297. doi: 10.1016/0079-6107(79)90030-0. [DOI] [PubMed] [Google Scholar]
  11. Dobson C. M., Evans P. A., Radford S. E. Understanding how proteins fold: the lysozyme story so far. Trends Biochem Sci. 1994 Jan;19(1):31–37. doi: 10.1016/0968-0004(94)90171-6. [DOI] [PubMed] [Google Scholar]
  12. Fischer B., Sumner I., Goodenough P. Renaturation of lysozyme--temperature dependence of renaturation rate, renaturation yield, and aggregation: identification of hydrophobic folding intermediates. Arch Biochem Biophys. 1993 Oct;306(1):183–187. doi: 10.1006/abbi.1993.1498. [DOI] [PubMed] [Google Scholar]
  13. Gates M. Analgesic drugs. Sci Am. 1966 Nov;215(5):131–136. doi: 10.1038/scientificamerican1166-131. [DOI] [PubMed] [Google Scholar]
  14. Goldberg M. E., Guillou Y. Native disulfide bonds greatly accelerate secondary structure formation in the folding of lysozyme. Protein Sci. 1994 Jun;3(6):883–887. doi: 10.1002/pro.5560030603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goldberg M. E., Rudolph R., Jaenicke R. A kinetic study of the competition between renaturation and aggregation during the refolding of denatured-reduced egg white lysozyme. Biochemistry. 1991 Mar 19;30(11):2790–2797. doi: 10.1021/bi00225a008. [DOI] [PubMed] [Google Scholar]
  16. Gray W. R. Disulfide structures of highly bridged peptides: a new strategy for analysis. Protein Sci. 1993 Oct;2(10):1732–1748. doi: 10.1002/pro.5560021017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Matagne A., Radford S. E., Dobson C. M. Fast and slow tracks in lysozyme folding: insight into the role of domains in the folding process. J Mol Biol. 1997 Apr 18;267(5):1068–1074. doi: 10.1006/jmbi.1997.0963. [DOI] [PubMed] [Google Scholar]
  18. Miranker A., Radford S. E., Karplus M., Dobson C. M. Demonstration by NMR of folding domains in lysozyme. Nature. 1991 Feb 14;349(6310):633–636. doi: 10.1038/349633a0. [DOI] [PubMed] [Google Scholar]
  19. Radford S. E., Dobson C. M., Evans P. A. The folding of hen lysozyme involves partially structured intermediates and multiple pathways. Nature. 1992 Jul 23;358(6384):302–307. doi: 10.1038/358302a0. [DOI] [PubMed] [Google Scholar]
  20. Raman B., Ramakrishna T., Rao C. M. Refolding of denatured and denatured/reduced lysozyme at high concentrations. J Biol Chem. 1996 Jul 19;271(29):17067–17072. doi: 10.1074/jbc.271.29.17067. [DOI] [PubMed] [Google Scholar]
  21. Rothwarf D. M., Li Y. J., Scheraga H. A. Regeneration of bovine pancreatic ribonuclease A: detailed kinetic analysis of two independent folding pathways. Biochemistry. 1998 Mar 17;37(11):3767–3776. doi: 10.1021/bi972823f. [DOI] [PubMed] [Google Scholar]
  22. Rothwarf D. M., Scheraga H. A. Equilibrium and kinetic constants for the thiol-disulfide interchange reaction between glutathione and dithiothreitol. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):7944–7948. doi: 10.1073/pnas.89.17.7944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rothwarf D. M., Scheraga H. A. Regeneration of bovine pancreatic ribonuclease A. 3. Dependence on the nature of the redox reagent. Biochemistry. 1993 Mar 16;32(10):2690–2697. doi: 10.1021/bi00061a029. [DOI] [PubMed] [Google Scholar]
  24. Roux P., Delepierre M., Goldberg M. E., Chaffotte A. F. Kinetics of secondary structure recovery during the refolding of reduced hen egg white lysozyme. J Biol Chem. 1997 Oct 3;272(40):24843–24849. doi: 10.1074/jbc.272.40.24843. [DOI] [PubMed] [Google Scholar]
  25. Ruoppolo M., Freedman R. B., Pucci P., Marino G. Glutathione-dependent pathways of refolding of RNase T1 by oxidation and disulfide isomerization: catalysis by protein disulfide isomerase. Biochemistry. 1996 Oct 22;35(42):13636–13646. doi: 10.1021/bi960755b. [DOI] [PubMed] [Google Scholar]
  26. Ruoppolo M., Lundström-Ljung J., Talamo F., Pucci P., Marino G. Effect of glutaredoxin and protein disulfide isomerase on the glutathione-dependent folding of ribonuclease A. Biochemistry. 1997 Oct 7;36(40):12259–12267. doi: 10.1021/bi970851s. [DOI] [PubMed] [Google Scholar]
  27. Ruoppolo M., Moutiez M., Mazzeo M. F., Pucci P., Ménez A., Marino G., Quéméneur E. The length of a single turn controls the overall folding rate of "three-fingered" snake toxins. Biochemistry. 1998 Nov 17;37(46):16060–16068. doi: 10.1021/bi981492j. [DOI] [PubMed] [Google Scholar]
  28. Sawano H., Koumoto Y., Ohta K., Sasaki Y., Segawa S., Tachibana H. Efficient in vitro folding of the three-disulfide derivatives of hen lysozyme in the presence of glycerol. FEBS Lett. 1992 May 25;303(1):11–14. doi: 10.1016/0014-5793(92)80466-t. [DOI] [PubMed] [Google Scholar]
  29. Saxena V. P., Wetlaufer D. B. Formation of three-dimensional structure in proteins. I. Rapid nonenzymic reactivation of reduced lysozyme. Biochemistry. 1970 Dec 8;9(25):5015–5023. doi: 10.1021/bi00827a028. [DOI] [PubMed] [Google Scholar]
  30. Smith L. J., Sutcliffe M. J., Redfield C., Dobson C. M. Structure of hen lysozyme in solution. J Mol Biol. 1993 Feb 20;229(4):930–944. doi: 10.1006/jmbi.1993.1097. [DOI] [PubMed] [Google Scholar]
  31. States D. J., Dobson C. M., Karplus M. A new two-disulphide intermediate in the refolding of reduced bovine pancreatic trypsin inhibitor. J Mol Biol. 1984 Apr 5;174(2):411–418. doi: 10.1016/0022-2836(84)90345-0. [DOI] [PubMed] [Google Scholar]
  32. Torella C., Ruoppolo M., Marino G., Pucci P. Analysis of RNase A refolding intermediates by electrospray/mass spectrometry. FEBS Lett. 1994 Oct 3;352(3):301–306. doi: 10.1016/0014-5793(94)00966-x. [DOI] [PubMed] [Google Scholar]
  33. Weissman J. S., Kim P. S. Reexamination of the folding of BPTI: predominance of native intermediates. Science. 1991 Sep 20;253(5026):1386–1393. doi: 10.1126/science.1716783. [DOI] [PubMed] [Google Scholar]
  34. Wildegger G., Kiefhaber T. Three-state model for lysozyme folding: triangular folding mechanism with an energetically trapped intermediate. J Mol Biol. 1997 Jul 11;270(2):294–304. doi: 10.1006/jmbi.1997.1030. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES