Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Dec;8(12):2686–2696. doi: 10.1110/ps.8.12.2686

Inhibition of the HIV-1 and HIV-2 proteases by a monoclonal antibody.

J Lescar 1, J Brynda 1, P Rezacova 1, R Stouracova 1, M M Riottot 1, V Chitarra 1, M Fabry 1, M Horejsi 1, J Sedlacek 1, G A Bentley 1
PMCID: PMC2144243  PMID: 10631984

Abstract

The monoclonal antibody 1696, directed against the HIV-1 protease, displays strong inhibitory effects toward the catalytic activity of the enzyme of both the HIV-1 and HIV-2 isolates. This antibody cross-reacts with peptides that include the N-terminus of the enzyme, a region that is well conserved in sequence among different viral strains and which, furthermore, is crucial for homodimerization to the active enzymatic form. This observation, as well as antigen-binding studies in the presence of an active site inhibitor, suggest that 1696 inhibits the HIV protease by destabilizing its active homodimeric form. To characterize further how the antibody 1696 inhibits the HIV-1 and HIV-2 proteases, we have solved the crystal structure of its Fab fragment by molecular replacement and refined it at 3.0 A resolution. The antigen binding site has a deep cavity at its center, which is lined mainly by acidic and hydrophobic residues, and is large enough to accommodate several antigen residues. The structure of the Fab 1696 could form a starting basis for the design of alternative HIV protease-inhibiting molecules of broad specificity.

Full Text

The Full Text of this article is available as a PDF (79.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ala P. J., Huston E. E., Klabe R. M., McCabe D. D., Duke J. L., Rizzo C. J., Korant B. D., DeLoskey R. J., Lam P. Y., Hodge C. N. Molecular basis of HIV-1 protease drug resistance: structural analysis of mutant proteases complexed with cyclic urea inhibitors. Biochemistry. 1997 Feb 18;36(7):1573–1580. doi: 10.1021/bi962234u. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Babé L. M., Pichuantes S., Craik C. S. Inhibition of HIV protease activity by heterodimer formation. Biochemistry. 1991 Jan 8;30(1):106–111. doi: 10.1021/bi00215a016. [DOI] [PubMed] [Google Scholar]
  4. Babé L. M., Rosé J., Craik C. S. Synthetic "interface" peptides alter dimeric assembly of the HIV 1 and 2 proteases. Protein Sci. 1992 Oct;1(10):1244–1253. doi: 10.1002/pro.5560011003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  6. Brünger A. T., Kuriyan J., Karplus M. Crystallographic R factor refinement by molecular dynamics. Science. 1987 Jan 23;235(4787):458–460. doi: 10.1126/science.235.4787.458. [DOI] [PubMed] [Google Scholar]
  7. Brünger A. T., Leahy D. J., Hynes T. R., Fox R. O. 2.9 A resolution structure of an anti-dinitrophenyl-spin-label monoclonal antibody Fab fragment with bound hapten. J Mol Biol. 1991 Sep 5;221(1):239–256. doi: 10.1016/0022-2836(91)80217-i. [DOI] [PubMed] [Google Scholar]
  8. Condra J. H., Schleif W. A., Blahy O. M., Gabryelski L. J., Graham D. J., Quintero J. C., Rhodes A., Robbins H. L., Roth E., Shivaprakash M. In vivo emergence of HIV-1 variants resistant to multiple protease inhibitors. Nature. 1995 Apr 6;374(6522):569–571. doi: 10.1038/374569a0. [DOI] [PubMed] [Google Scholar]
  9. Darke P. L., Jordan S. P., Hall D. L., Zugay J. A., Shafer J. A., Kuo L. C. Dissociation and association of the HIV-1 protease dimer subunits: equilibria and rates. Biochemistry. 1994 Jan 11;33(1):98–105. doi: 10.1021/bi00167a013. [DOI] [PubMed] [Google Scholar]
  10. Darke P. L. Stability of dimeric retroviral proteases. Methods Enzymol. 1994;241:104–127. doi: 10.1016/0076-6879(94)41062-3. [DOI] [PubMed] [Google Scholar]
  11. Friguet B., Chaffotte A. F., Djavadi-Ohaniance L., Goldberg M. E. Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay. J Immunol Methods. 1985 Mar 18;77(2):305–319. doi: 10.1016/0022-1759(85)90044-4. [DOI] [PubMed] [Google Scholar]
  12. Holzman T. F., Kohlbrenner W. E., Weigl D., Rittenhouse J., Kempf D., Erickson J. Inhibitor stabilization of human immunodeficiency virus type-2 proteinase dimer formation. J Biol Chem. 1991 Oct 15;266(29):19217–19220. [PubMed] [Google Scholar]
  13. Jiang J. S., Brünger A. T. Protein hydration observed by X-ray diffraction. Solvation properties of penicillopepsin and neuraminidase crystal structures. J Mol Biol. 1994 Oct 14;243(1):100–115. doi: 10.1006/jmbi.1994.1633. [DOI] [PubMed] [Google Scholar]
  14. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  15. Katz R. A., Skalka A. M. The retroviral enzymes. Annu Rev Biochem. 1994;63:133–173. doi: 10.1146/annurev.bi.63.070194.001025. [DOI] [PubMed] [Google Scholar]
  16. Kohl N. E., Emini E. A., Schleif W. A., Davis L. J., Heimbach J. C., Dixon R. A., Scolnick E. M., Sigal I. S. Active human immunodeficiency virus protease is required for viral infectivity. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4686–4690. doi: 10.1073/pnas.85.13.4686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kozal M. J., Shah N., Shen N., Yang R., Fucini R., Merigan T. C., Richman D. D., Morris D., Hubbell E., Chee M. Extensive polymorphisms observed in HIV-1 clade B protease gene using high-density oligonucleotide arrays. Nat Med. 1996 Jul;2(7):753–759. doi: 10.1038/nm0796-753. [DOI] [PubMed] [Google Scholar]
  18. Kuzmic P. Kinetic assay for HIV proteinase subunit dissociation. Biochem Biophys Res Commun. 1993 Mar 31;191(3):998–1003. doi: 10.1006/bbrc.1993.1316. [DOI] [PubMed] [Google Scholar]
  19. Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975 Aug 7;256(5517):495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
  20. Lescar J., Stouracova R., Riottot M. M., Chitarra V., Brynda J., Fabry M., Horejsi M., Sedlacek J., Bentley G. A. Preliminary crystallographic studies of an anti-HIV-1 protease antibody that inhibits enzyme activity. Protein Sci. 1996 May;5(5):966–968. doi: 10.1002/pro.5560050518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lescar J., Stouracova R., Riottot M. M., Chitarra V., Brynda J., Fabry M., Horejsi M., Sedlacek J., Bentley G. A. Three-dimensional structure of an Fab-peptide complex: structural basis of HIV-1 protease inhibition by a monoclonal antibody. J Mol Biol. 1997 Apr 18;267(5):1207–1222. doi: 10.1006/jmbi.1997.0950. [DOI] [PubMed] [Google Scholar]
  22. Majer P., Urban J., Gregorová E., Konvalinka J., Novek P., Stehlíková J., Andreánsky M., Sedlácek J., Strop P. Specificity mapping of HIV-1 protease by reduced bond inhibitors. Arch Biochem Biophys. 1993 Jul;304(1):1–8. doi: 10.1006/abbi.1993.1314. [DOI] [PubMed] [Google Scholar]
  23. Marasco W. A., Chen S., Richardson J. H., Ramstedt U., Jones S. D. Intracellular antibodies against HIV-1 envelope protein for AIDS gene therapy. Hum Gene Ther. 1998 Jul 20;9(11):1627–1642. doi: 10.1089/hum.1998.9.11-1627. [DOI] [PubMed] [Google Scholar]
  24. Milner-White E., Ross B. M., Ismail R., Belhadj-Mostefa K., Poet R. One type of gamma-turn, rather than the other gives rise to chain-reversal in proteins. J Mol Biol. 1988 Dec 5;204(3):777–782. doi: 10.1016/0022-2836(88)90368-3. [DOI] [PubMed] [Google Scholar]
  25. Molla A., Korneyeva M., Gao Q., Vasavanonda S., Schipper P. J., Mo H. M., Markowitz M., Chernyavskiy T., Niu P., Lyons N. Ordered accumulation of mutations in HIV protease confers resistance to ritonavir. Nat Med. 1996 Jul;2(7):760–766. doi: 10.1038/nm0796-760. [DOI] [PubMed] [Google Scholar]
  26. Mulichak A. M., Hui J. O., Tomasselli A. G., Heinrikson R. L., Curry K. A., Tomich C. S., Thaisrivongs S., Sawyer T. K., Watenpaugh K. D. The crystallographic structure of the protease from human immunodeficiency virus type 2 with two synthetic peptidic transition state analog inhibitors. J Biol Chem. 1993 Jun 25;268(18):13103–13109. [PubMed] [Google Scholar]
  27. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  28. Orlandi R., Güssow D. H., Jones P. T., Winter G. Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. Proc Natl Acad Sci U S A. 1989 May;86(10):3833–3837. doi: 10.1073/pnas.86.10.3833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Padlan E. A. Anatomy of the antibody molecule. Mol Immunol. 1994 Feb;31(3):169–217. doi: 10.1016/0161-5890(94)90001-9. [DOI] [PubMed] [Google Scholar]
  30. Poljak R. J. Crystallization of immunoglobulins and their fragments for X-ray diffraction studies. Methods Enzymol. 1985;116:190–200. doi: 10.1016/s0076-6879(85)16013-1. [DOI] [PubMed] [Google Scholar]
  31. Rana K. Z., Dudley M. N. Human immunodeficiency virus protease inhibitors. Pharmacotherapy. 1999 Jan;19(1):35–59. doi: 10.1592/phco.19.1.35.30513. [DOI] [PubMed] [Google Scholar]
  32. Ridky T., Leis J. Development of drug resistance to HIV-1 protease inhibitors. J Biol Chem. 1995 Dec 15;270(50):29621–29623. doi: 10.1074/jbc.270.50.29621. [DOI] [PubMed] [Google Scholar]
  33. Roberts N. A., Martin J. A., Kinchington D., Broadhurst A. V., Craig J. C., Duncan I. B., Galpin S. A., Handa B. K., Kay J., Kröhn A. Rational design of peptide-based HIV proteinase inhibitors. Science. 1990 Apr 20;248(4953):358–361. doi: 10.1126/science.2183354. [DOI] [PubMed] [Google Scholar]
  34. Rondon I. J., Marasco W. A. Intracellular antibodies (intrabodies) for gene therapy of infectious diseases. Annu Rev Microbiol. 1997;51:257–283. doi: 10.1146/annurev.micro.51.1.257. [DOI] [PubMed] [Google Scholar]
  35. Rosé J. R., Babé L. M., Craik C. S. Defining the level of human immunodeficiency virus type 1 (HIV-1) protease activity required for HIV-1 particle maturation and infectivity. J Virol. 1995 May;69(5):2751–2758. doi: 10.1128/jvi.69.5.2751-2758.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Saragovi H. U., Fitzpatrick D., Raktabutr A., Nakanishi H., Kahn M., Greene M. I. Design and synthesis of a mimetic from an antibody complementarity-determining region. Science. 1991 Aug 16;253(5021):792–795. doi: 10.1126/science.1876837. [DOI] [PubMed] [Google Scholar]
  37. Schramm H. J., Billich A., Jaeger E., Rücknagel K. P., Arnold G., Schramm W. The inhibition of HIV-1 protease by interface peptides. Biochem Biophys Res Commun. 1993 Jul 30;194(2):595–600. doi: 10.1006/bbrc.1993.1863. [DOI] [PubMed] [Google Scholar]
  38. Schramm H. J., Nakashima H., Schramm W., Wakayama H., Yamamoto N. HIV-1 reproduction is inhibited by peptides derived frm the N- and C-termini of HIV-1 protease. Biochem Biophys Res Commun. 1991 Sep 16;179(2):847–851. doi: 10.1016/0006-291x(91)91895-j. [DOI] [PubMed] [Google Scholar]
  39. Sedlácek J., Fábry M., Horejsí M., Brynda J., Luftig R. B., Majer P. A rapid screening method for biological activity of human immunodeficiency virus proteinase inhibitors by using a recombinant DNA-derived bacterial system. Anal Biochem. 1993 Dec;215(2):306–309. doi: 10.1006/abio.1993.1593. [DOI] [PubMed] [Google Scholar]
  40. Tong L., Pav S., Pargellis C., Dô F., Lamarre D., Anderson P. C. Crystal structure of human immunodeficiency virus (HIV) type 2 protease in complex with a reduced amide inhibitor and comparison with HIV-1 protease structures. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8387–8391. doi: 10.1073/pnas.90.18.8387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Urban J., Konvalinka J., Stehlíková J., Gregorová E., Majer P., Soucek M., Andreánsky M., Fábry M., Strop P. Reduced-bond tight-binding inhibitors of HIV-1 protease. Fine tuning of the enzyme subsite specificity. FEBS Lett. 1992 Feb 17;298(1):9–13. doi: 10.1016/0014-5793(92)80010-e. [DOI] [PubMed] [Google Scholar]
  42. Weber I. T. Comparison of the crystal structures and intersubunit interactions of human immunodeficiency and Rous sarcoma virus proteases. J Biol Chem. 1990 Jun 25;265(18):10492–10496. [PubMed] [Google Scholar]
  43. Williams J. W., Morrison J. F. The kinetics of reversible tight-binding inhibition. Methods Enzymol. 1979;63:437–467. doi: 10.1016/0076-6879(79)63019-7. [DOI] [PubMed] [Google Scholar]
  44. Wilson I. A., Garcia K. C. T-cell receptor structure and TCR complexes. Curr Opin Struct Biol. 1997 Dec;7(6):839–848. doi: 10.1016/s0959-440x(97)80156-x. [DOI] [PubMed] [Google Scholar]
  45. Winslow D. L., Stack S., King R., Scarnati H., Bincsik A., Otto M. J. Limited sequence diversity of the HIV type 1 protease gene from clinical isolates and in vitro susceptibility to HIV protease inhibitors. AIDS Res Hum Retroviruses. 1995 Jan;11(1):107–113. doi: 10.1089/aid.1995.11.107. [DOI] [PubMed] [Google Scholar]
  46. Wlodawer A., Erickson J. W. Structure-based inhibitors of HIV-1 protease. Annu Rev Biochem. 1993;62:543–585. doi: 10.1146/annurev.bi.62.070193.002551. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES