Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Dec;8(12):2773–2783. doi: 10.1110/ps.8.12.2773

Synthesis, folding, and structure of the beta-turn mimic modified B1 domain of streptococcal protein G.

B Odaert 1, F Jean 1, C Boutillon 1, E Buisine 1, O Melnyk 1, A Tartar 1, G Lippens 1
PMCID: PMC2144244  PMID: 10631995

Abstract

The mechanism of beta-sheet formation remains a fundamental issue in our understanding of the protein folding process, but is hampered by the often encountered kinetic competition between folding and aggregation. The role of local versus nonlocal interactions has been probed traditionally by mutagenesis of both turn and strand residues. Recently, rigid organic molecules that impose a correct chain reversal have been introduced in several small peptides to isolate the importance of the long-range interactions. Here, we present the incorporation of a well-studied beta-turn mimic, designated as the dibenzofuran-based (DBF) amino acid, in the B1 domain of streptococcal protein G (B1G), and compare our results with those obtained upon insertion of the same mimic into the N-terminal beta-hairpin of B1G (O Melnyk et al., 1998, Lett Pept Sci 5:147-150). The DBF-B1G domain conserves the structure and the functional and thermodynamical properties of the native protein, whereas the modified peptide does not adopt a native-like conformation. The nature of the DBF flanking residues in the modified B1G domain prevents the beta-turn mimic from acting as a strong beta-sheet nucleator, which reinforces the idea that the native beta-hairpin formation is not driven by the beta-turn formation, but by tertiary interactions.

Full Text

The Full Text of this article is available as a PDF (524.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander P., Fahnestock S., Lee T., Orban J., Bryan P. Thermodynamic analysis of the folding of the streptococcal protein G IgG-binding domains B1 and B2: why small proteins tend to have high denaturation temperatures. Biochemistry. 1992 Apr 14;31(14):3597–3603. doi: 10.1021/bi00129a007. [DOI] [PubMed] [Google Scholar]
  2. Alexander P., Orban J., Bryan P. Kinetic analysis of folding and unfolding the 56 amino acid IgG-binding domain of streptococcal protein G. Biochemistry. 1992 Aug 18;31(32):7243–7248. doi: 10.1021/bi00147a006. [DOI] [PubMed] [Google Scholar]
  3. Baca M., Alewood P. F., Kent S. B. Structural engineering of the HIV-1 protease molecule with a beta-turn mimic of fixed geometry. Protein Sci. 1993 Jul;2(7):1085–1091. doi: 10.1002/pro.5560020702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blanco F. J., Jiménez M. A., Pineda A., Rico M., Santoro J., Nieto J. L. NMR solution structure of the isolated N-terminal fragment of protein-G B1 domain. Evidence of trifluoroethanol induced native-like beta-hairpin formation. Biochemistry. 1994 May 17;33(19):6004–6014. doi: 10.1021/bi00185a041. [DOI] [PubMed] [Google Scholar]
  5. Blanco F. J., Ortiz A. R., Serrano L. Role of a nonnative interaction in the folding of the protein G B1 domain as inferred from the conformational analysis of the alpha-helix fragment. Fold Des. 1997;2(2):123–133. doi: 10.1016/s1359-0278(97)00017-5. [DOI] [PubMed] [Google Scholar]
  6. Blanco F. J., Rivas G., Serrano L. A short linear peptide that folds into a native stable beta-hairpin in aqueous solution. Nat Struct Biol. 1994 Sep;1(9):584–590. doi: 10.1038/nsb0994-584. [DOI] [PubMed] [Google Scholar]
  7. Blanco F. J., Serrano L. Folding of protein G B1 domain studied by the conformational characterization of fragments comprising its secondary structure elements. Eur J Biochem. 1995 Jun 1;230(2):634–649. doi: 10.1111/j.1432-1033.1995.tb20605.x. [DOI] [PubMed] [Google Scholar]
  8. Boutillon C., Wintjens R., Lippens G., Drobecq H., Tartar A. Synthesis, three-dimensional structure, and specific 15N-labelling of the streptococcal protein G B1-domain. Eur J Biochem. 1995 Jul 1;231(1):166–180. [PubMed] [Google Scholar]
  9. Dalal S., Balasubramanian S., Regan L. Protein alchemy: changing beta-sheet into alpha-helix. Nat Struct Biol. 1997 Jul;4(7):548–552. doi: 10.1038/nsb0797-548. [DOI] [PubMed] [Google Scholar]
  10. Dobson C. M., Evans P. A., Radford S. E. Understanding how proteins fold: the lysozyme story so far. Trends Biochem Sci. 1994 Jan;19(1):31–37. doi: 10.1016/0968-0004(94)90171-6. [DOI] [PubMed] [Google Scholar]
  11. Dyson H. J., Rance M., Houghten R. A., Wright P. E., Lerner R. A. Folding of immunogenic peptide fragments of proteins in water solution. II. The nascent helix. J Mol Biol. 1988 May 5;201(1):201–217. doi: 10.1016/0022-2836(88)90447-0. [DOI] [PubMed] [Google Scholar]
  12. Erntell M., Myhre E. B., Sjöbring U., Björck L. Streptococcal protein G has affinity for both Fab- and Fc-fragments of human IgG. Mol Immunol. 1988 Feb;25(2):121–126. doi: 10.1016/0161-5890(88)90059-4. [DOI] [PubMed] [Google Scholar]
  13. Fink A. L. Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold Des. 1998;3(1):R9–23. doi: 10.1016/S1359-0278(98)00002-9. [DOI] [PubMed] [Google Scholar]
  14. Frank M. K., Clore G. M., Gronenborn A. M. Structural and dynamic characterization of the urea denatured state of the immunoglobulin binding domain of streptococcal protein G by multidimensional heteronuclear NMR spectroscopy. Protein Sci. 1995 Dec;4(12):2605–2615. doi: 10.1002/pro.5560041218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Freund S. M., Wong K. B., Fersht A. R. Initiation sites of protein folding by NMR analysis. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10600–10603. doi: 10.1073/pnas.93.20.10600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gallagher T., Alexander P., Bryan P., Gilliland G. L. Two crystal structures of the B1 immunoglobulin-binding domain of streptococcal protein G and comparison with NMR. Biochemistry. 1994 Apr 19;33(15):4721–4729. [PubMed] [Google Scholar]
  17. Goward C. R., Irons L. I., Murphy J. P., Atkinson T. The secondary structure of protein G', a robust molecule. Biochem J. 1991 Mar 1;274(Pt 2):503–507. doi: 10.1042/bj2740503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Graciani N. R., Tsang K. Y., McCutchen S. L., Kelly J. W. Amino acids that specify structure through hydrophobic clustering and histidine-aromatic interactions lead to biologically active peptidomimetics. Bioorg Med Chem. 1994 Sep;2(9):999–1006. doi: 10.1016/s0968-0896(00)82048-9. [DOI] [PubMed] [Google Scholar]
  19. Gronenborn A. M., Filpula D. R., Essig N. Z., Achari A., Whitlow M., Wingfield P. T., Clore G. M. A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. Science. 1991 Aug 9;253(5020):657–661. doi: 10.1126/science.1871600. [DOI] [PubMed] [Google Scholar]
  20. Gronenborn A. M., Frank M. K., Clore G. M. Core mutants of the immunoglobulin binding domain of streptococcal protein G: stability and structural integrity. FEBS Lett. 1996 Dec 2;398(2-3):312–316. doi: 10.1016/s0014-5793(96)01262-8. [DOI] [PubMed] [Google Scholar]
  21. Hellinga H. W. Computational protein engineering. Nat Struct Biol. 1998 Jul;5(7):525–527. doi: 10.1038/776. [DOI] [PubMed] [Google Scholar]
  22. Huang G. S., Oas T. G. Submillisecond folding of monomeric lambda repressor. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6878–6882. doi: 10.1073/pnas.92.15.6878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Koh J. T., Cornish V. W., Schultz P. G. An experimental approach to evaluating the role of backbone interactions in proteins using unnatural amino acid mutagenesis. Biochemistry. 1997 Sep 23;36(38):11314–11322. doi: 10.1021/bi9707685. [DOI] [PubMed] [Google Scholar]
  24. Kortemme T., Ramírez-Alvarado M., Serrano L. Design of a 20-amino acid, three-stranded beta-sheet protein. Science. 1998 Jul 10;281(5374):253–256. doi: 10.1126/science.281.5374.253. [DOI] [PubMed] [Google Scholar]
  25. Kuszewski J., Clore G. M., Gronenborn A. M. Fast folding of a prototypic polypeptide: the immunoglobulin binding domain of streptococcal protein G. Protein Sci. 1994 Nov;3(11):1945–1952. doi: 10.1002/pro.5560031106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Malakauskas S. M., Mayo S. L. Design, structure and stability of a hyperthermophilic protein variant. Nat Struct Biol. 1998 Jun;5(6):470–475. doi: 10.1038/nsb0698-470. [DOI] [PubMed] [Google Scholar]
  27. Martins J. C., Van de Ven F. J., Borremans F. A. Determination of the three-dimensional solution structure of scyllatoxin by 1H nuclear magnetic resonance. J Mol Biol. 1995 Nov 3;253(4):590–603. doi: 10.1006/jmbi.1995.0575. [DOI] [PubMed] [Google Scholar]
  28. Merrifield B. Solid phase synthesis. Science. 1986 Apr 18;232(4748):341–347. doi: 10.1126/science.3961484. [DOI] [PubMed] [Google Scholar]
  29. Minor D. L., Jr, Kim P. S. Context is a major determinant of beta-sheet propensity. Nature. 1994 Sep 15;371(6494):264–267. doi: 10.1038/371264a0. [DOI] [PubMed] [Google Scholar]
  30. Minor D. L., Jr, Kim P. S. Measurement of the beta-sheet-forming propensities of amino acids. Nature. 1994 Feb 17;367(6464):660–663. doi: 10.1038/367660a0. [DOI] [PubMed] [Google Scholar]
  31. Muir T. W., Sondhi D., Cole P. A. Expressed protein ligation: a general method for protein engineering. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6705–6710. doi: 10.1073/pnas.95.12.6705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Muñoz V., Cronet P., López-Hernández E., Serrano L. Analysis of the effect of local interactions on protein stability. Fold Des. 1996;1(3):167–178. doi: 10.1016/s1359-0278(96)00029-6. [DOI] [PubMed] [Google Scholar]
  33. Muñoz V., Serrano L. Elucidating the folding problem of helical peptides using empirical parameters. II. Helix macrodipole effects and rational modification of the helical content of natural peptides. J Mol Biol. 1995 Jan 20;245(3):275–296. doi: 10.1006/jmbi.1994.0023. [DOI] [PubMed] [Google Scholar]
  34. Muñoz V., Serrano L. Elucidating the folding problem of helical peptides using empirical parameters. Nat Struct Biol. 1994 Jun;1(6):399–409. doi: 10.1038/nsb0694-399. [DOI] [PubMed] [Google Scholar]
  35. Muñoz V., Thompson P. A., Hofrichter J., Eaton W. A. Folding dynamics and mechanism of beta-hairpin formation. Nature. 1997 Nov 13;390(6656):196–199. doi: 10.1038/36626. [DOI] [PubMed] [Google Scholar]
  36. Neira J. L., Fersht A. R. An NMR study on the beta-hairpin region of barnase. Fold Des. 1996;1(3):231–241. doi: 10.1016/s1359-0278(96)00034-x. [DOI] [PubMed] [Google Scholar]
  37. Nesloney C. L., Kelly J. W. Progress towards understanding beta-sheet structure. Bioorg Med Chem. 1996 Jun;4(6):739–766. doi: 10.1016/0968-0896(96)00051-x. [DOI] [PubMed] [Google Scholar]
  38. Nesloney Carey L., Kelly Jeffery W. Synthesis and Hydrogen Bonding Capabilities of Biphenyl-Based Amino Acids Designed To Nucleate beta-Sheet Structure. J Org Chem. 1996 May 3;61(9):3127–3137. doi: 10.1021/jo952194k. [DOI] [PubMed] [Google Scholar]
  39. O'Neil K. T., Hoess R. H., Raleigh D. P., DeGrado W. F. Thermodynamic genetics of the folding of the B1 immunoglobulin-binding domain from streptococcal protein G. Proteins. 1995 Jan;21(1):11–21. doi: 10.1002/prot.340210103. [DOI] [PubMed] [Google Scholar]
  40. Orban J., Alexander P., Bryan P. Hydrogen-deuterium exchange in the free and immunoglobulin G-bound protein G B-domain. Biochemistry. 1994 May 17;33(19):5702–5710. doi: 10.1021/bi00185a006. [DOI] [PubMed] [Google Scholar]
  41. Orban J., Alexander P., Bryan P., Khare D. Assessment of stability differences in the protein G B1 and B2 domains from hydrogen-deuterium exchange: comparison with calorimetric data. Biochemistry. 1995 Nov 21;34(46):15291–15300. doi: 10.1021/bi00046a038. [DOI] [PubMed] [Google Scholar]
  42. Park S. H., O'Neil K. T., Roder H. An early intermediate in the folding reaction of the B1 domain of protein G contains a native-like core. Biochemistry. 1997 Nov 25;36(47):14277–14283. doi: 10.1021/bi971914+. [DOI] [PubMed] [Google Scholar]
  43. Prieto J., Wilmans M., Jiménez M. A., Rico M., Serrano L. Non-native local interactions in protein folding and stability: introducing a helical tendency in the all beta-sheet alpha-spectrin SH3 domain. J Mol Biol. 1997 May 16;268(4):760–778. doi: 10.1006/jmbi.1997.0984. [DOI] [PubMed] [Google Scholar]
  44. Radford S. E., Dobson C. M. From computer simulations to human disease: emerging themes in protein folding. Cell. 1999 Apr 30;97(3):291–298. doi: 10.1016/s0092-8674(00)80739-4. [DOI] [PubMed] [Google Scholar]
  45. Ramírez-Alvarado M., Blanco F. J., Niemann H., Serrano L. Role of beta-turn residues in beta-hairpin formation and stability in designed peptides. J Mol Biol. 1997 Nov 7;273(4):898–912. doi: 10.1006/jmbi.1997.1347. [DOI] [PubMed] [Google Scholar]
  46. Rose G. D. Protein folding and the Paracelsus challenge. Nat Struct Biol. 1997 Jul;4(7):512–514. doi: 10.1038/nsb0797-512. [DOI] [PubMed] [Google Scholar]
  47. Severinov K., Muir T. W. Expressed protein ligation, a novel method for studying protein-protein interactions in transcription. J Biol Chem. 1998 Jun 26;273(26):16205–16209. doi: 10.1074/jbc.273.26.16205. [DOI] [PubMed] [Google Scholar]
  48. Sheinerman F. B., Brooks C. L., 3rd A molecular dynamics simulation study of segment B1 of protein G. Proteins. 1997 Oct;29(2):193–202. doi: 10.1002/(sici)1097-0134(199710)29:2<193::aid-prot7>3.0.co;2-e. [DOI] [PubMed] [Google Scholar]
  49. Sheinerman F. B., Brooks C. L., 3rd Molecular picture of folding of a small alpha/beta protein. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1562–1567. doi: 10.1073/pnas.95.4.1562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Viguera A. R., Villegas V., Avilés F. X., Serrano L. Favourable native-like helical local interactions can accelerate protein folding. Fold Des. 1997;2(1):23–33. doi: 10.1016/S1359-0278(97)00003-5. [DOI] [PubMed] [Google Scholar]
  51. Villegas V., Viguera A. R., Avilés F. X., Serrano L. Stabilization of proteins by rational design of alpha-helix stability using helix/coil transition theory. Fold Des. 1996;1(1):29–34. [PubMed] [Google Scholar]
  52. de Alba E., Jiménez M. A., Rico M., Nieto J. L. Conformational investigation of designed short linear peptides able to fold into beta-hairpin structures in aqueous solution. Fold Des. 1996;1(2):133–144. doi: 10.1016/s1359-0278(96)00022-3. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES