Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Feb;8(2):291–297. doi: 10.1110/ps.8.2.291

Crystal structure of human muscle aldolase complexed with fructose 1,6-bisphosphate: mechanistic implications.

A Dalby 1, Z Dauter 1, J A Littlechild 1
PMCID: PMC2144250  PMID: 10048322

Abstract

Fructose 1,6-bisphosphate aldolase catalyzes the reversible cleavage of fructose 1,6-bisphosphate and fructose 1-phosphate to dihydroxyacetone phosphate and either glyceraldehyde 3-phosphate or glyceraldehyde, respectively. Catalysis involves the formation of a Schiff's base intermediate formed at the epsilon-amino group of Lys229. The existing apo-enzyme structure was refined using the crystallographic free-R-factor and maximum likelihood methods that have been shown to give improved structural results that are less subject to model bias. Crystals were also soaked with the natural substrate (fructose 1,6-bisphosphate), and the crystal structure of this complex has been determined to 2.8 A. The apo structure differs from the previous Brookhaven-deposited structure (1ald) in the flexible C-terminal region. This is also the region where the native and complex structures exhibit differences. The conformational changes between native and complex structure are not large, but the observed complex does not involve the full formation of the Schiff's base intermediate, and suggests a preliminary hydrogen-bonded Michaelis complex before the formation of the covalent complex.

Full Text

The Full Text of this article is available as a PDF (604.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anai M., Lai C. Y., Horecker B. L. The pyridoxal phosphate-binding site of rabbit muscle aldolase. Arch Biochem Biophys. 1973 Jun;156(2):712–719. doi: 10.1016/0003-9861(73)90324-x. [DOI] [PubMed] [Google Scholar]
  2. Blom N. S., Tétreault S., Coulombe R., Sygusch J. Novel active site in Escherichia coli fructose 1,6-bisphosphate aldolase. Nat Struct Biol. 1996 Oct;3(10):856–862. doi: 10.1038/nsb1096-856. [DOI] [PubMed] [Google Scholar]
  3. Blom N., Sygusch J. Product binding and role of the C-terminal region in class I D-fructose 1,6-bisphosphate aldolase. Nat Struct Biol. 1997 Jan;4(1):36–39. doi: 10.1038/nsb0197-36. [DOI] [PubMed] [Google Scholar]
  4. Blonski C., De Moissac D., Périé J., Sygusch J. Inhibition of rabbit muscle aldolase by phosphorylated aromatic compounds. Biochem J. 1997 Apr 1;323(Pt 1):71–77. doi: 10.1042/bj3230071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bork P., Gellerich J., Groth H., Hooft R., Martin F. Divergent evolution of a beta/alpha-barrel subclass: detection of numerous phosphate-binding sites by motif search. Protein Sci. 1995 Feb;4(2):268–274. doi: 10.1002/pro.5560040213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cooper S. J., Leonard G. A., McSweeney S. M., Thompson A. W., Naismith J. H., Qamar S., Plater A., Berry A., Hunter W. N. The crystal structure of a class II fructose-1,6-bisphosphate aldolase shows a novel binuclear metal-binding active site embedded in a familiar fold. Structure. 1996 Nov 15;4(11):1303–1315. doi: 10.1016/s0969-2126(96)00138-4. [DOI] [PubMed] [Google Scholar]
  7. Dreyer M. K., Schulz G. E. Refined high-resolution structure of the metal-ion dependent L-fuculose-1-phosphate aldolase (class II) from Escherichia coli. Acta Crystallogr D Biol Crystallogr. 1996 Nov 1;52(Pt 6):1082–1091. doi: 10.1107/S0907444996009146. [DOI] [PubMed] [Google Scholar]
  8. Gamblin S. J., Davies G. J., Grimes J. M., Jackson R. M., Littlechild J. A., Watson H. C. Activity and specificity of human aldolases. J Mol Biol. 1991 Jun 20;219(4):573–576. doi: 10.1016/0022-2836(91)90650-u. [DOI] [PubMed] [Google Scholar]
  9. Gefflaut T., Blonski C., Perie J., Willson M. Class I aldolases: substrate specificity, mechanism, inhibitors and structural aspects. Prog Biophys Mol Biol. 1995;63(3):301–340. doi: 10.1016/0079-6107(95)00008-9. [DOI] [PubMed] [Google Scholar]
  10. Gupta S., Hollenstein R., Kochhar S., Christen P. Paracatalytic self-inactivation of fructose-1,6-bisphosphate aldolase. Structure of the crosslink formed at the active site. Eur J Biochem. 1993 Jun 1;214(2):515–519. doi: 10.1111/j.1432-1033.1993.tb17949.x. [DOI] [PubMed] [Google Scholar]
  11. Hartman F. C., Brown J. P. Affinity labeling of a previously undetected essential lysyl residue in class I fructose bisphosphate aldolase. J Biol Chem. 1976 May 25;251(10):3057–3062. [PubMed] [Google Scholar]
  12. Hester G., Brenner-Holzach O., Rossi F. A., Struck-Donatz M., Winterhalter K. H., Smit J. D., Piontek K. The crystal structure of fructose-1,6-bisphosphate aldolase from Drosophila melanogaster at 2.5 A resolution. FEBS Lett. 1991 Nov 4;292(1-2):237–242. doi: 10.1016/0014-5793(91)80875-4. [DOI] [PubMed] [Google Scholar]
  13. Jia J., Huang W., Schörken U., Sahm H., Sprenger G. A., Lindqvist Y., Schneider G. Crystal structure of transaldolase B from Escherichia coli suggests a circular permutation of the alpha/beta barrel within the class I aldolase family. Structure. 1996 Jun 15;4(6):715–724. doi: 10.1016/s0969-2126(96)00077-9. [DOI] [PubMed] [Google Scholar]
  14. Jia J., Schörken U., Lindqvist Y., Sprenger G. A., Schneider G. Crystal structure of the reduced Schiff-base intermediate complex of transaldolase B from Escherichia coli: mechanistic implications for class I aldolases. Protein Sci. 1997 Jan;6(1):119–124. doi: 10.1002/pro.5560060113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  16. Kochman M., Dobryszycki P. Topography and conformational changes of fructose-1,6-bisphosphate aldolase. Acta Biochim Pol. 1991;38(4):407–421. [PubMed] [Google Scholar]
  17. Lai C. Y., Nakai N., Chang D. Amino acid sequence of rabbit muscle aldolase and the structure of the active center. Science. 1974 Mar;183(130):1204–1206. doi: 10.1126/science.183.4130.1204. [DOI] [PubMed] [Google Scholar]
  18. Lamzin V. S., Wilson K. S. Automated refinement of protein models. Acta Crystallogr D Biol Crystallogr. 1993 Jan 1;49(Pt 1):129–147. doi: 10.1107/S0907444992008886. [DOI] [PubMed] [Google Scholar]
  19. Lobb R. R., Stokes A. M., Hill H. A., Riordan J. F. Arginine as the C-1 phosphate binding site in rabbit muscle aldolase. FEBS Lett. 1975 Jun 1;54(1):70–72. doi: 10.1016/0014-5793(75)81070-2. [DOI] [PubMed] [Google Scholar]
  20. Marsh J. J., Lebherz H. G. Fructose-bisphosphate aldolases: an evolutionary history. Trends Biochem Sci. 1992 Mar;17(3):110–113. doi: 10.1016/0968-0004(92)90247-7. [DOI] [PubMed] [Google Scholar]
  21. Millar J. R., Shaw P. J., Stammers D. K., Watson H. C. The low-resolution structure of human muscle aldolase. Philos Trans R Soc Lond B Biol Sci. 1981 Jun 26;293(1063):209–214. doi: 10.1098/rstb.1981.0074. [DOI] [PubMed] [Google Scholar]
  22. Morris A. J., Tolan D. R. Lysine-146 of rabbit muscle aldolase is essential for cleavage and condensation of the C3-C4 bond of fructose 1,6-bis(phosphate). Biochemistry. 1994 Oct 11;33(40):12291–12297. doi: 10.1021/bi00206a036. [DOI] [PubMed] [Google Scholar]
  23. Morris A. J., Tolan D. R. Site-directed mutagenesis identifies aspartate 33 as a previously unidentified critical residue in the catalytic mechanism of rabbit aldolase A. J Biol Chem. 1993 Jan 15;268(2):1095–1100. [PubMed] [Google Scholar]
  24. Morse D. E., Horecker B. L. The mechanism of action of aldolases. Adv Enzymol Relat Areas Mol Biol. 1968;31:125–181. doi: 10.1002/9780470122761.ch4. [DOI] [PubMed] [Google Scholar]
  25. Murshudov G. N., Vagin A. A., Dodson E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240–255. doi: 10.1107/S0907444996012255. [DOI] [PubMed] [Google Scholar]
  26. Penhoet E. E., Kochman M., Rutter W. J. Molecular and catalytic properties of aldolase C. Biochemistry. 1969 Nov;8(11):4396–4402. doi: 10.1021/bi00839a026. [DOI] [PubMed] [Google Scholar]
  27. Penhoet E., Rajkumar T., Rutter W. J. Multiple forms of fructose diphosphate aldolase in mammalian tissues. Proc Natl Acad Sci U S A. 1966 Oct;56(4):1275–1282. doi: 10.1073/pnas.56.4.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. RUTTER W. J. EVOLUTION OF ALDOLASE. Fed Proc. 1964 Nov-Dec;23:1248–1257. [PubMed] [Google Scholar]
  29. Rose I. A., O'Connell E. L. Specificity of fructose-1, 6-P2 aldolase (muscle) and partition of the enzyme among catalytic intermediates in the steady state. J Biol Chem. 1977 Jan 25;252(2):479–482. [PubMed] [Google Scholar]
  30. Sygusch J., Beaudry D., Allaire M. Inactivation of mammalian fructose diphosphate aldolases by COOH terminus autophosphorylation. Arch Biochem Biophys. 1990 Dec;283(2):227–233. doi: 10.1016/0003-9861(90)90636-d. [DOI] [PubMed] [Google Scholar]
  31. Sygusch J., Beaudry D., Allaire M. Molecular architecture of rabbit skeletal muscle aldolase at 2.7-A resolution. Proc Natl Acad Sci U S A. 1987 Nov;84(22):7846–7850. doi: 10.1073/pnas.84.22.7846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sygusch J., Beaudry D. Catalytic activity of rabbit skeletal muscle aldolase in the crystalline state. J Biol Chem. 1984 Aug 25;259(16):10222–10227. [PubMed] [Google Scholar]
  33. Takahashi I., Takasaki Y., Hori K. Site-directed mutagenesis of human aldolase isozymes: the role of Cys-72 and Cys-338 residues of aldolase A and of the carboxy-terminal Tyr residues of aldolases A and B. J Biochem. 1989 Feb;105(2):281–286. doi: 10.1093/oxfordjournals.jbchem.a122654. [DOI] [PubMed] [Google Scholar]
  34. Takasaki Y., Hori K. Studies on chimeric fusion proteins of human aldolase isozymes A and B. Protein Eng. 1992 Jan;5(1):101–104. doi: 10.1093/protein/5.1.101. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES