Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Feb;8(2):430–434. doi: 10.1110/ps.8.2.430

Variants of ribonuclease inhibitor that resist oxidation.

B M Kim 1, L W Schultz 1, R T Raines 1
PMCID: PMC2144251  PMID: 10048337

Abstract

Human ribonuclease inhibitor (hRI) is a cytosolic protein that protects cells from the adventitious invasion of pancreatic-type ribonucleases. hRI has 32 cysteine residues. The oxidation of these cysteine residues to form disulfide bonds is a rapid, cooperative process that inactivates hRI. The most proximal cysteine residues in native hRI are two pairs that are adjacent in sequence: Cys94 and Cys95, and Cys328 and Cys329. A cystine formed from such adjacent cysteine residues would likely contain a perturbing cis peptide bond within its eight-membered ring, which would disrupt the structure of hRI and could facilitate further oxidation. We find that replacing Cys328 and Cys329 with alanine residues has little effect on the affinity of hRI for bovine pancreatic ribonuclease A (RNase A), but increases its resistance to oxidation by 10- to 15-fold. Similar effects are observed for the single variants, C328A hRI and C329A hRI, suggesting that oxidation resistance arises from the inability to form a Cys328-Cys329 disulfide bond. Replacing Cys94 and Cys95 with alanine residues increases oxidation resistance to a lesser extent, and decreases the affinity of hRI for RNase A. The C328A, C329A, and C328A/C329A variants are likely to be more useful than wild-type hRI for inhibiting pancreatic-type ribonucleases in vitro and in vivo. We conclude that replacing adjacent cysteine residues can confer oxidation resistance in a protein.

Full Text

The Full Text of this article is available as a PDF (627.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aoki Y., Natori S. Activation of latent ribonuclease in the fat-body of fleshfly (Sarcophaga peregrina) larvae on pupation. Biochem J. 1981 Jun 15;196(3):699–703. doi: 10.1042/bj1960699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blake C. C., Ghosh M., Harlos K., Avezoux A., Anthony C. The active site of methanol dehydrogenase contains a disulphide bridge between adjacent cysteine residues. Nat Struct Biol. 1994 Feb;1(2):102–105. doi: 10.1038/nsb0294-102. [DOI] [PubMed] [Google Scholar]
  3. Blázquez M., Fominaya J. M., Hofsteenge J. Oxidation of sulfhydryl groups of ribonuclease inhibitor in epithelial cells is sufficient for its intracellular degradation. J Biol Chem. 1996 Aug 2;271(31):18638–18642. doi: 10.1074/jbc.271.31.18638. [DOI] [PubMed] [Google Scholar]
  4. Ferreras M., Gavilanes J. G., López-Otín C., García-Segura J. M. Thiol-disulfide exchange of ribonuclease inhibitor bound to ribonuclease A. Evidence of active inhibitor-bound ribonuclease. J Biol Chem. 1995 Dec 1;270(48):28570–28578. doi: 10.1074/jbc.270.48.28570. [DOI] [PubMed] [Google Scholar]
  5. Fominaya J. M., García-Segura J. M., Ferreras M., Gavilanes J. G. Theoretical treatment of tight-binding inhibition of an enzyme. Ribonuclease inhibitor as special case. Biochem J. 1988 Jul 15;253(2):517–522. doi: 10.1042/bj2530517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fominaya J. M., Hofsteenge J. Inactivation of ribonuclease inhibitor by thiol-disulfide exchange. J Biol Chem. 1992 Dec 5;267(34):24655–24660. [PubMed] [Google Scholar]
  7. Gehrmann J., Alewood P. F., Craik D. J. Structure determination of the three disulfide bond isomers of alpha-conotoxin GI: a model for the role of disulfide bonds in structural stability. J Mol Biol. 1998 May 1;278(2):401–415. doi: 10.1006/jmbi.1998.1701. [DOI] [PubMed] [Google Scholar]
  8. Kobe B., Deisenhofer J. A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature. 1995 Mar 9;374(6518):183–186. doi: 10.1038/374183a0. [DOI] [PubMed] [Google Scholar]
  9. Kobe B., Deisenhofer J. Crystal structure of porcine ribonuclease inhibitor, a protein with leucine-rich repeats. Nature. 1993 Dec 23;366(6457):751–756. doi: 10.1038/366751a0. [DOI] [PubMed] [Google Scholar]
  10. Kobe B., Deisenhofer J. The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci. 1994 Oct;19(10):415–421. doi: 10.1016/0968-0004(94)90090-6. [DOI] [PubMed] [Google Scholar]
  11. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  12. Lee F. S., Fox E. A., Zhou H. M., Strydom D. J., Vallee B. L. Primary structure of human placental ribonuclease inhibitor. Biochemistry. 1988 Nov 15;27(23):8545–8553. doi: 10.1021/bi00423a007. [DOI] [PubMed] [Google Scholar]
  13. Lee F. S., Shapiro R., Vallee B. L. Tight-binding inhibition of angiogenin and ribonuclease A by placental ribonuclease inhibitor. Biochemistry. 1989 Jan 10;28(1):225–230. doi: 10.1021/bi00427a031. [DOI] [PubMed] [Google Scholar]
  14. Lee F. S., Vallee B. L. Structure and action of mammalian ribonuclease (angiogenin) inhibitor. Prog Nucleic Acid Res Mol Biol. 1993;44:1–30. doi: 10.1016/s0079-6603(08)60215-9. [DOI] [PubMed] [Google Scholar]
  15. Leland P. A., Schultz L. W., Kim B. M., Raines R. T. Ribonuclease A variants with potent cytotoxic activity. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10407–10412. doi: 10.1073/pnas.95.18.10407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Papageorgiou A. C., Shapiro R., Acharya K. R. Molecular recognition of human angiogenin by placental ribonuclease inhibitor--an X-ray crystallographic study at 2.0 A resolution. EMBO J. 1997 Sep 1;16(17):5162–5177. doi: 10.1093/emboj/16.17.5162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Polakowski I. J., Lewis M. K., Muthukkaruppan V. R., Erdman B., Kubai L., Auerbach R. A ribonuclease inhibitor expresses anti-angiogenic properties and leads to reduced tumor growth in mice. Am J Pathol. 1993 Aug;143(2):507–517. [PMC free article] [PubMed] [Google Scholar]
  18. Raines R. T. Nature's transitory covalent bond. Nat Struct Biol. 1997 Jun;4(6):424–427. doi: 10.1038/nsb0697-424. [DOI] [PubMed] [Google Scholar]
  19. Raines Ronald T. Ribonuclease A. Chem Rev. 1998 May 7;98(3):1045–1066. doi: 10.1021/cr960427h. [DOI] [PubMed] [Google Scholar]
  20. Shapiro R., Vallee B. L. Human placental ribonuclease inhibitor abolishes both angiogenic and ribonucleolytic activities of angiogenin. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2238–2241. doi: 10.1073/pnas.84.8.2238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Vicentini A. M., Kieffer B., Matthies R., Meyhack B., Hemmings B. A., Stone S. R., Hofsteenge J. Protein chemical and kinetic characterization of recombinant porcine ribonuclease inhibitor expressed in Saccharomyces cerevisiae. Biochemistry. 1990 Sep 18;29(37):8827–8834. doi: 10.1021/bi00489a046. [DOI] [PubMed] [Google Scholar]
  22. Yakovlev G. I., Moiseyev G. P., Bezborodova S. I., Both V., Sevcik J. A comparative study on the catalytic properties of guanyl-specific ribonucleases. Eur J Biochem. 1992 Feb 15;204(1):187–190. doi: 10.1111/j.1432-1033.1992.tb16622.x. [DOI] [PubMed] [Google Scholar]
  23. Zhang R. M., Snyder G. H. Dependence of formation of small disulfide loops in two-cysteine peptides on the number and types of intervening amino acids. J Biol Chem. 1989 Nov 5;264(31):18472–18479. [PubMed] [Google Scholar]
  24. delCardayré S. B., Ribó M., Yokel E. M., Quirk D. J., Rutter W. J., Raines R. T. Engineering ribonuclease A: production, purification and characterization of wild-type enzyme and mutants at Gln11. Protein Eng. 1995 Mar;8(3):261–273. doi: 10.1093/protein/8.3.261. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES