Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Feb;8(2):418–425. doi: 10.1110/ps.8.2.418

Simplified methods for pKa and acid pH-dependent stability estimation in proteins: removing dielectric and counterion boundaries.

J Warwicker 1
PMCID: PMC2144253  PMID: 10048335

Abstract

Much computational research aimed at understanding ionizable group interactions in proteins has focused on numerical solutions of the Poisson-Boltzmann (PB) equation, incorporating protein exclusion zones for solvent and counterions in a continuum model. Poor agreement with measured pKas and pH-dependent stabilities for a (protein, solvent) relative dielectric boundary of (4,80) has lead to the adoption of an intermediate (20,80) boundary. It is now shown that a simple Debye-Huckel (DH) calculation, removing both the low dielectric and counterion exclusion regions associated with protein, is equally effective in general pKa calculations. However, a broad-based discrepancy to measured pH-dependent stabilities is maintained in the absence of ionizable group interactions in the unfolded state. A simple model is introduced for these interactions, with a significantly improved match to experiment that suggests a potential utility in predicting and analyzing the acid pH-dependence of protein stability. The methods are applied to the relative pH-dependent stabilities of the pore-forming domains of colicins A and N. The results relate generally to the well-known preponderance of surface ionizable groups with solvent-mediated interactions. Although numerical PB solutions do not currently have a significant advantage for overall pKa estimations, development based on consideration of microscopic solvation energetics in tandem with the continuum model could combine the large deltapKas of a subset of ionizable groups with the overall robustness of the DH model.

Full Text

The Full Text of this article is available as a PDF (630.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antosiewicz J., McCammon J. A., Gilson M. K. Prediction of pH-dependent properties of proteins. J Mol Biol. 1994 May 6;238(3):415–436. doi: 10.1006/jmbi.1994.1301. [DOI] [PubMed] [Google Scholar]
  2. Antosiewicz J., McCammon J. A., Gilson M. K. The determinants of pKas in proteins. Biochemistry. 1996 Jun 18;35(24):7819–7833. doi: 10.1021/bi9601565. [DOI] [PubMed] [Google Scholar]
  3. Bashford D., Karplus M. pKa's of ionizable groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry. 1990 Nov 6;29(44):10219–10225. doi: 10.1021/bi00496a010. [DOI] [PubMed] [Google Scholar]
  4. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  5. Beroza P., Fredkin D. R., Okamura M. Y., Feher G. Protonation of interacting residues in a protein by a Monte Carlo method: application to lysozyme and the photosynthetic reaction center of Rhodobacter sphaeroides. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5804–5808. doi: 10.1073/pnas.88.13.5804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Evans L. J., Goble M. L., Hales K. A., Lakey J. H. Different sensitivities to acid denaturation within a family of proteins: implications for acid unfolding and membrane translocation. Biochemistry. 1996 Oct 8;35(40):13180–13185. doi: 10.1021/bi960990u. [DOI] [PubMed] [Google Scholar]
  7. Fink A. L., Calciano L. J., Goto Y., Kurotsu T., Palleros D. R. Classification of acid denaturation of proteins: intermediates and unfolded states. Biochemistry. 1994 Oct 18;33(41):12504–12511. doi: 10.1021/bi00207a018. [DOI] [PubMed] [Google Scholar]
  8. Gilson M. K., Honig B. H. The dielectric constant of a folded protein. Biopolymers. 1986 Nov;25(11):2097–2119. doi: 10.1002/bip.360251106. [DOI] [PubMed] [Google Scholar]
  9. Karshikov A., Duerring M., Huber R. Role of electrostatic interaction in the stability of the hexamer of constitutive phycocyanin from Fremyella diplosiphon. Protein Eng. 1991 Aug;4(6):681–690. doi: 10.1093/protein/4.6.681. [DOI] [PubMed] [Google Scholar]
  10. Kesvatera T., Jönsson B., Thulin E., Linse S. Binding of Ca2+ to calbindin D9k: structural stability and function at high salt concentration. Biochemistry. 1994 Nov 29;33(47):14170–14176. doi: 10.1021/bi00251a028. [DOI] [PubMed] [Google Scholar]
  11. Kesvatera T., Jönsson B., Thulin E., Linse S. Measurement and modelling of sequence-specific pKa values of lysine residues in calbindin D9k. J Mol Biol. 1996 Jun 21;259(4):828–839. doi: 10.1006/jmbi.1996.0361. [DOI] [PubMed] [Google Scholar]
  12. Klapper I., Hagstrom R., Fine R., Sharp K., Honig B. Focusing of electric fields in the active site of Cu-Zn superoxide dismutase: effects of ionic strength and amino-acid modification. Proteins. 1986 Sep;1(1):47–59. doi: 10.1002/prot.340010109. [DOI] [PubMed] [Google Scholar]
  13. Kuramitsu S., Hamaguchi K. Analysis of the acid-base titration curve of hen lysozyme. J Biochem. 1980 Apr;87(4):1215–1219. [PubMed] [Google Scholar]
  14. Lakey J. H., Parker M. W., González-Mañas J. M., Duché D., Vriend G., Baty D., Pattus F. The role of electrostatic charge in the membrane insertion of colicin A. Calculation and mutation. Eur J Biochem. 1994 Feb 15;220(1):155–163. doi: 10.1111/j.1432-1033.1994.tb18610.x. [DOI] [PubMed] [Google Scholar]
  15. Loewenthal R., Sancho J., Fersht A. R. Histidine-aromatic interactions in barnase. Elevation of histidine pKa and contribution to protein stability. J Mol Biol. 1992 Apr 5;224(3):759–770. doi: 10.1016/0022-2836(92)90560-7. [DOI] [PubMed] [Google Scholar]
  16. Oliveberg M., Arcus V. L., Fersht A. R. pKA values of carboxyl groups in the native and denatured states of barnase: the pKA values of the denatured state are on average 0.4 units lower than those of model compounds. Biochemistry. 1995 Jul 25;34(29):9424–9433. doi: 10.1021/bi00029a018. [DOI] [PubMed] [Google Scholar]
  17. Parker M. W., Pattus F., Tucker A. D., Tsernoglou D. Structure of the membrane-pore-forming fragment of colicin A. Nature. 1989 Jan 5;337(6202):93–96. doi: 10.1038/337093a0. [DOI] [PubMed] [Google Scholar]
  18. Parker M. W., Postma J. P., Pattus F., Tucker A. D., Tsernoglou D. Refined structure of the pore-forming domain of colicin A at 2.4 A resolution. J Mol Biol. 1992 Apr 5;224(3):639–657. doi: 10.1016/0022-2836(92)90550-4. [DOI] [PubMed] [Google Scholar]
  19. Sham Y. Y., Muegge I., Warshel A. The effect of protein relaxation on charge-charge interactions and dielectric constants of proteins. Biophys J. 1998 Apr;74(4):1744–1753. doi: 10.1016/S0006-3495(98)77885-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Warwicker J. Continuum dielectric modelling of the protein-solvent system, and calculation of the long-range electrostatic field of the enzyme phosphoglycerate mutase. J Theor Biol. 1986 Jul 21;121(2):199–210. doi: 10.1016/s0022-5193(86)80093-5. [DOI] [PubMed] [Google Scholar]
  21. Warwicker J., Engelman B. P., Steitz T. A. Electrostatic calculations and model-building suggest that DNA bound to CAP is sharply bent. Proteins. 1987;2(4):283–289. doi: 10.1002/prot.340020404. [DOI] [PubMed] [Google Scholar]
  22. Warwicker J. Improving pKa calculations with consideration of hydration entropy. Protein Eng. 1997 Jul;10(7):809–814. doi: 10.1093/protein/10.7.809. [DOI] [PubMed] [Google Scholar]
  23. Warwicker J. Modeling charge interactions and redox properties in DsbA. J Biol Chem. 1998 Jan 30;273(5):2501–2504. doi: 10.1074/jbc.273.5.2501. [DOI] [PubMed] [Google Scholar]
  24. Warwicker J., Watson H. C. Calculation of the electric potential in the active site cleft due to alpha-helix dipoles. J Mol Biol. 1982 Jun 5;157(4):671–679. doi: 10.1016/0022-2836(82)90505-8. [DOI] [PubMed] [Google Scholar]
  25. Yang A. S., Honig B. On the pH dependence of protein stability. J Mol Biol. 1993 May 20;231(2):459–474. doi: 10.1006/jmbi.1993.1294. [DOI] [PubMed] [Google Scholar]
  26. You T. J., Bashford D. Conformation and hydrogen ion titration of proteins: a continuum electrostatic model with conformational flexibility. Biophys J. 1995 Nov;69(5):1721–1733. doi: 10.1016/S0006-3495(95)80042-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zhou H. X., Vijayakumar M. Modeling of protein conformational fluctuations in pKa predictions. J Mol Biol. 1997 Apr 11;267(4):1002–1011. doi: 10.1006/jmbi.1997.0895. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES