Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Feb;8(2):271–282. doi: 10.1110/ps.8.2.271

Molecular dynamics as a tool to detect protein foldability. A mutant of domain B1 of protein G with non-native secondary structure propensities.

D Cregut 1, L Serrano 1
PMCID: PMC2144254  PMID: 10048320

Abstract

The usefulness of molecular dynamics to assess the structural integrity of mutants containing several mutations has been investigated. Our goal was to determine whether molecular dynamics would be able to discriminate mutants of a protein having a close-to-wild-type fold, from those that are not folded under the same conditions. We used as a model the B1 domain of protein G in which we replaced the unique central alpha-helix by the sequence of the second beta-hairpin, which has a strong intrinsic propensity to form this secondary structure in solution. In the resulting protein, one-third of the secondary structure has been replaced by a non-native one. Models of the mutants were built based on the three-dimensional structure of the wild-type GB1 domain. During 2 ns of molecular dynamics simulations on these models, mutants containing up to 10 mutations in the helix retained the native fold, while another mutant with an additional mutation unfolded. This result is in agreement with our circular dichroism and NMR experiments, which indicated that the former mutants fold into a structure similar to the wild-type, as opposed to the latter mutant which is partly unfolded. Additionally, a mutant containing six mutations scattered through the surface of the domain, and which is unfolded, was also detected by the simulation. This study suggests that molecular dynamics calculations could be performed on molecular models of mutants of a protein to evaluate their foldability, prior to a mutagenesis experiment.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achari A., Hale S. P., Howard A. J., Clore G. M., Gronenborn A. M., Hardman K. D., Whitlow M. 1.67-A X-ray structure of the B2 immunoglobulin-binding domain of streptococcal protein G and comparison to the NMR structure of the B1 domain. Biochemistry. 1992 Nov 3;31(43):10449–10457. doi: 10.1021/bi00158a006. [DOI] [PubMed] [Google Scholar]
  2. Alexander P., Fahnestock S., Lee T., Orban J., Bryan P. Thermodynamic analysis of the folding of the streptococcal protein G IgG-binding domains B1 and B2: why small proteins tend to have high denaturation temperatures. Biochemistry. 1992 Apr 14;31(14):3597–3603. doi: 10.1021/bi00129a007. [DOI] [PubMed] [Google Scholar]
  3. Alexander P., Orban J., Bryan P. Kinetic analysis of folding and unfolding the 56 amino acid IgG-binding domain of streptococcal protein G. Biochemistry. 1992 Aug 18;31(32):7243–7248. doi: 10.1021/bi00147a006. [DOI] [PubMed] [Google Scholar]
  4. Blanco F. J., Ortiz A. R., Serrano L. Role of a nonnative interaction in the folding of the protein G B1 domain as inferred from the conformational analysis of the alpha-helix fragment. Fold Des. 1997;2(2):123–133. doi: 10.1016/s1359-0278(97)00017-5. [DOI] [PubMed] [Google Scholar]
  5. Blanco F. J., Rivas G., Serrano L. A short linear peptide that folds into a native stable beta-hairpin in aqueous solution. Nat Struct Biol. 1994 Sep;1(9):584–590. doi: 10.1038/nsb0994-584. [DOI] [PubMed] [Google Scholar]
  6. Blanco F. J., Serrano L. Folding of protein G B1 domain studied by the conformational characterization of fragments comprising its secondary structure elements. Eur J Biochem. 1995 Jun 1;230(2):634–649. doi: 10.1111/j.1432-1033.1995.tb20605.x. [DOI] [PubMed] [Google Scholar]
  7. Caflisch A., Karplus M. Acid and thermal denaturation of barnase investigated by molecular dynamics simulations. J Mol Biol. 1995 Oct 6;252(5):672–708. doi: 10.1006/jmbi.1995.0528. [DOI] [PubMed] [Google Scholar]
  8. Callahan T. J., Swanson E., Lybrand T. P. MD Display: an interactive graphics program for visualization of molecular dynamics trajectories. J Mol Graph. 1996 Feb;14(1):39-41, 32. doi: 10.1016/0263-7855(95)00088-7. [DOI] [PubMed] [Google Scholar]
  9. Daggett V., Levitt M. Protein unfolding pathways explored through molecular dynamics simulations. J Mol Biol. 1993 Jul 20;232(2):600–619. doi: 10.1006/jmbi.1993.1414. [DOI] [PubMed] [Google Scholar]
  10. Eisenberg D., McLachlan A. D. Solvation energy in protein folding and binding. Nature. 1986 Jan 16;319(6050):199–203. doi: 10.1038/319199a0. [DOI] [PubMed] [Google Scholar]
  11. Gallagher T., Alexander P., Bryan P., Gilliland G. L. Two crystal structures of the B1 immunoglobulin-binding domain of streptococcal protein G and comparison with NMR. Biochemistry. 1994 Apr 19;33(15):4721–4729. [PubMed] [Google Scholar]
  12. Gronenborn A. M., Filpula D. R., Essig N. Z., Achari A., Whitlow M., Wingfield P. T., Clore G. M. A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. Science. 1991 Aug 9;253(5020):657–661. doi: 10.1126/science.1871600. [DOI] [PubMed] [Google Scholar]
  13. Hao M. H., Pincus M. R., Rackovsky S., Scheraga H. A. Unfolding and refolding of the native structure of bovine pancreatic trypsin inhibitor studied by computer simulations. Biochemistry. 1993 Sep 21;32(37):9614–9631. doi: 10.1021/bi00088a014. [DOI] [PubMed] [Google Scholar]
  14. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  15. Karplus M., Petsko G. A. Molecular dynamics simulations in biology. Nature. 1990 Oct 18;347(6294):631–639. doi: 10.1038/347631a0. [DOI] [PubMed] [Google Scholar]
  16. Kazmirski S. L., Alonso D. O., Cohen F. E., Prusiner S. B., Daggett V. Theoretical studies of sequence effects on the conformational properties of a fragment of the prion protein: implications for scrapie formation. Chem Biol. 1995 May;2(5):305–315. doi: 10.1016/1074-5521(95)90049-7. [DOI] [PubMed] [Google Scholar]
  17. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  18. Lazaridis T., Karplus M. "New view" of protein folding reconciled with the old through multiple unfolding simulations. Science. 1997 Dec 12;278(5345):1928–1931. doi: 10.1126/science.278.5345.1928. [DOI] [PubMed] [Google Scholar]
  19. Li A., Daggett V. Molecular dynamics simulation of the unfolding of barnase: characterization of the major intermediate. J Mol Biol. 1998 Jan 30;275(4):677–694. doi: 10.1006/jmbi.1997.1484. [DOI] [PubMed] [Google Scholar]
  20. Lian L. Y., Derrick J. P., Sutcliffe M. J., Yang J. C., Roberts G. C. Determination of the solution structures of domains II and III of protein G from Streptococcus by 1H nuclear magnetic resonance. J Mol Biol. 1992 Dec 20;228(4):1219–1234. doi: 10.1016/0022-2836(92)90328-h. [DOI] [PubMed] [Google Scholar]
  21. Lüthy R., Bowie J. U., Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature. 1992 Mar 5;356(6364):83–85. doi: 10.1038/356083a0. [DOI] [PubMed] [Google Scholar]
  22. Mark A. E., van Gunsteren W. F. Simulation of the thermal denaturation of hen egg white lysozyme: trapping the molten globule state. Biochemistry. 1992 Sep 1;31(34):7745–7748. doi: 10.1021/bi00149a001. [DOI] [PubMed] [Google Scholar]
  23. Morgan R. S., Tatsch C. E., Gushard R. H., McAdon J., Warme P. K. Chains of alternating sulfur and pi-bonded atoms in eight small proteins. Int J Pept Protein Res. 1978 Mar;11(3):209–217. doi: 10.1111/j.1399-3011.1978.tb02841.x. [DOI] [PubMed] [Google Scholar]
  24. Muñoz V., Blanco F. J., Serrano L. The hydrophobic-staple motif and a role for loop-residues in alpha-helix stability and protein folding. Nat Struct Biol. 1995 May;2(5):380–385. doi: 10.1038/nsb0595-380. [DOI] [PubMed] [Google Scholar]
  25. Muñoz V., Serrano L. Analysis of i,i+5 and i,i+8 hydrophobic interactions in a helical model peptide bearing the hydrophobic staple motif. Biochemistry. 1995 Nov 21;34(46):15301–15306. doi: 10.1021/bi00046a039. [DOI] [PubMed] [Google Scholar]
  26. Novotný J., Rashin A. A., Bruccoleri R. E. Criteria that discriminate between native proteins and incorrectly folded models. Proteins. 1988;4(1):19–30. doi: 10.1002/prot.340040105. [DOI] [PubMed] [Google Scholar]
  27. Park S. H., O'Neil K. T., Roder H. An early intermediate in the folding reaction of the B1 domain of protein G contains a native-like core. Biochemistry. 1997 Nov 25;36(47):14277–14283. doi: 10.1021/bi971914+. [DOI] [PubMed] [Google Scholar]
  28. Schiffer C. A., van Gunsteren W. F. Structural stability of disulfide mutants of basic pancreatic trypsin inhibitor: a molecular dynamics study. Proteins. 1996 Sep;26(1):66–71. doi: 10.1002/(SICI)1097-0134(199609)26:1<66::AID-PROT6>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  29. Seale J. W., Srinivasan R., Rose G. D. Sequence determinants of the capping box, a stabilizing motif at the N-termini of alpha-helices. Protein Sci. 1994 Oct;3(10):1741–1745. doi: 10.1002/pro.5560031014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sippl M. J. Boltzmann's principle, knowledge-based mean fields and protein folding. An approach to the computational determination of protein structures. J Comput Aided Mol Des. 1993 Aug;7(4):473–501. doi: 10.1007/BF02337562. [DOI] [PubMed] [Google Scholar]
  31. Sippl M. J. Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins. J Mol Biol. 1990 Jun 20;213(4):859–883. doi: 10.1016/s0022-2836(05)80269-4. [DOI] [PubMed] [Google Scholar]
  32. Sippl M. J. Recognition of errors in three-dimensional structures of proteins. Proteins. 1993 Dec;17(4):355–362. doi: 10.1002/prot.340170404. [DOI] [PubMed] [Google Scholar]
  33. Stapley B. J., Rohl C. A., Doig A. J. Addition of side chain interactions to modified Lifson-Roig helix-coil theory: application to energetics of phenylalanine-methionine interactions. Protein Sci. 1995 Nov;4(11):2383–2391. doi: 10.1002/pro.5560041117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tuffery P., Etchebest C., Hazout S., Lavery R. A new approach to the rapid determination of protein side chain conformations. J Biomol Struct Dyn. 1991 Jun;8(6):1267–1289. doi: 10.1080/07391102.1991.10507882. [DOI] [PubMed] [Google Scholar]
  35. Van Gunsteren W. F., Hünenberger P. H., Kovacs H., Mark A. E., Schiffer C. A. Investigation of protein unfolding and stability by computer simulation. Philos Trans R Soc Lond B Biol Sci. 1995 Apr 29;348(1323):49–59. doi: 10.1098/rstb.1995.0045. [DOI] [PubMed] [Google Scholar]
  36. Viguera A. R., Serrano L. Side-chain interactions between sulfur-containing amino acids and phenylalanine in alpha-helices. Biochemistry. 1995 Jul 11;34(27):8771–8779. doi: 10.1021/bi00027a028. [DOI] [PubMed] [Google Scholar]
  37. Williams M. A., Thornton J. M., Goodfellow J. M. Modelling protein unfolding: hen egg-white lysozyme. Protein Eng. 1997 Aug;10(8):895–903. doi: 10.1093/protein/10.8.895. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES