Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Feb;8(2):326–342. doi: 10.1110/ps.8.2.326

Sequence specificity, statistical potentials, and three-dimensional structure prediction with self-correcting distance geometry calculations of beta-sheet formation in proteins.

H Zhu 1, W Braun 1
PMCID: PMC2144259  PMID: 10048326

Abstract

A statistical analysis of a representative data set of 169 known protein structures was used to analyze the specificity of residue interactions between spatial neighboring strands in beta-sheets. Pairwise potentials were derived from the frequency of residue pairs in nearest contact, second nearest and third nearest contacts across neighboring beta-strands compared to the expected frequency of residue pairs in a random model. A pseudo-energy function based on these statistical pairwise potentials recognized native beta-sheets among possible alternative pairings. The native pairing was found within the three lowest energies in 73% of the cases in the training data set and in 63% of beta-sheets in a test data set of 67 proteins, which were not part of the training set. The energy function was also used to detect tripeptides, which occur frequently in beta-sheets of native proteins. The majority of native partners of tripeptides were distributed in a low energy range. Self-correcting distance geometry (SECODG) calculations using distance constraints sets derived from possible low energy pairing of beta-strands uniquely identified the native pairing of the beta-sheet in pancreatic trypsin inhibitor (BPTI). These results will be useful for predicting the structure of proteins from their amino acid sequence as well as for the design of proteins containing beta-sheets.

Full Text

The Full Text of this article is available as a PDF (581.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beasley J. R., Hecht M. H. Protein design: the choice of de novo sequences. J Biol Chem. 1997 Jan 24;272(4):2031–2034. doi: 10.1074/jbc.272.4.2031. [DOI] [PubMed] [Google Scholar]
  2. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank. A computer-based archival file for macromolecular structures. Eur J Biochem. 1977 Nov 1;80(2):319–324. doi: 10.1111/j.1432-1033.1977.tb11885.x. [DOI] [PubMed] [Google Scholar]
  3. Bowie J. U., Lüthy R., Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science. 1991 Jul 12;253(5016):164–170. doi: 10.1126/science.1853201. [DOI] [PubMed] [Google Scholar]
  4. Bryant S. H., Lawrence C. E. An empirical energy function for threading protein sequence through the folding motif. Proteins. 1993 May;16(1):92–112. doi: 10.1002/prot.340160110. [DOI] [PubMed] [Google Scholar]
  5. Bryant S. H., Lawrence C. E. The frequency of ion-pair substructures in proteins is quantitatively related to electrostatic potential: a statistical model for nonbonded interactions. Proteins. 1991;9(2):108–119. doi: 10.1002/prot.340090205. [DOI] [PubMed] [Google Scholar]
  6. Chou P. Y., Fasman G. D. Empirical predictions of protein conformation. Annu Rev Biochem. 1978;47:251–276. doi: 10.1146/annurev.bi.47.070178.001343. [DOI] [PubMed] [Google Scholar]
  7. Creighton T. E., Darby N. J., Kemmink J. The roles of partly folded intermediates in protein folding. FASEB J. 1996 Jan;10(1):110–118. doi: 10.1096/fasebj.10.1.8566531. [DOI] [PubMed] [Google Scholar]
  8. Dahiyat B. I., Mayo S. L. De novo protein design: fully automated sequence selection. Science. 1997 Oct 3;278(5335):82–87. doi: 10.1126/science.278.5335.82. [DOI] [PubMed] [Google Scholar]
  9. Finkelstein A. V., Badretdinov AYa, Gutin A. M. Why do protein architectures have Boltzmann-like statistics? Proteins. 1995 Oct;23(2):142–150. doi: 10.1002/prot.340230204. [DOI] [PubMed] [Google Scholar]
  10. Finkelstein A. V., Gutun A. M., Badretdinov AYa Why are the same protein folds used to perform different functions? FEBS Lett. 1993 Jun 28;325(1-2):23–28. doi: 10.1016/0014-5793(93)81407-q. [DOI] [PubMed] [Google Scholar]
  11. Finkelstein A. V., Reva B. A. Search for the most stable folds of protein chains: I. Application of a self-consistent molecular field theory to a problem of protein three-dimensional structure prediction. Protein Eng. 1996 May;9(5):387–397. doi: 10.1093/protein/9.5.387. [DOI] [PubMed] [Google Scholar]
  12. Godzik A., Kolinski A., Skolnick J. Topology fingerprint approach to the inverse protein folding problem. J Mol Biol. 1992 Sep 5;227(1):227–238. doi: 10.1016/0022-2836(92)90693-e. [DOI] [PubMed] [Google Scholar]
  13. Harrison P. M., Sternberg M. J. The disulphide beta-cross: from cystine geometry and clustering to classification of small disulphide-rich protein folds. J Mol Biol. 1996 Dec 6;264(3):603–623. doi: 10.1006/jmbi.1996.0664. [DOI] [PubMed] [Google Scholar]
  14. Hecht M. H. De novo design of beta-sheet proteins. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8729–8730. doi: 10.1073/pnas.91.19.8729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hänggi G., Braun W. Pattern recognition and self-correcting distance geometry calculations applied to myohemerythrin. FEBS Lett. 1994 May 16;344(2-3):147–153. doi: 10.1016/0014-5793(94)00366-1. [DOI] [PubMed] [Google Scholar]
  16. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  17. Kamimura M., Takahashi Y. Phi-psi conformational pattern clustering of protein amino acid residues using the potential function method. Comput Appl Biosci. 1994 Apr;10(2):163–169. doi: 10.1093/bioinformatics/10.2.163. [DOI] [PubMed] [Google Scholar]
  18. Kim C. A., Berg J. M. A 2.2 A resolution crystal structure of a designed zinc finger protein bound to DNA. Nat Struct Biol. 1996 Nov;3(11):940–945. doi: 10.1038/nsb1196-940. [DOI] [PubMed] [Google Scholar]
  19. Kim C. A., Berg J. M. Thermodynamic beta-sheet propensities measured using a zinc-finger host peptide. Nature. 1993 Mar 18;362(6417):267–270. doi: 10.1038/362267a0. [DOI] [PubMed] [Google Scholar]
  20. Kocher J. P., Rooman M. J., Wodak S. J. Factors influencing the ability of knowledge-based potentials to identify native sequence-structure matches. J Mol Biol. 1994 Feb 4;235(5):1598–1613. doi: 10.1006/jmbi.1994.1109. [DOI] [PubMed] [Google Scholar]
  21. Levitt M. Conformational preferences of amino acids in globular proteins. Biochemistry. 1978 Oct 3;17(20):4277–4285. doi: 10.1021/bi00613a026. [DOI] [PubMed] [Google Scholar]
  22. Lifson S., Sander C. Specific recognition in the tertiary structure of beta-sheets of proteins. J Mol Biol. 1980 Jun 5;139(4):627–639. doi: 10.1016/0022-2836(80)90052-2. [DOI] [PubMed] [Google Scholar]
  23. Maiorov V. N., Crippen G. M. Contact potential that recognizes the correct folding of globular proteins. J Mol Biol. 1992 Oct 5;227(3):876–888. doi: 10.1016/0022-2836(92)90228-c. [DOI] [PubMed] [Google Scholar]
  24. Minor D. L., Jr, Kim P. S. Context is a major determinant of beta-sheet propensity. Nature. 1994 Sep 15;371(6494):264–267. doi: 10.1038/371264a0. [DOI] [PubMed] [Google Scholar]
  25. Minor D. L., Jr, Kim P. S. Measurement of the beta-sheet-forming propensities of amino acids. Nature. 1994 Feb 17;367(6464):660–663. doi: 10.1038/367660a0. [DOI] [PubMed] [Google Scholar]
  26. Mirny L. A., Shakhnovich E. I. How to derive a protein folding potential? A new approach to an old problem. J Mol Biol. 1996 Dec 20;264(5):1164–1179. doi: 10.1006/jmbi.1996.0704. [DOI] [PubMed] [Google Scholar]
  27. Miyazawa S., Jernigan R. L. Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J Mol Biol. 1996 Mar 1;256(3):623–644. doi: 10.1006/jmbi.1996.0114. [DOI] [PubMed] [Google Scholar]
  28. Mumenthaler C., Braun W. Predicting the helix packing of globular proteins by self-correcting distance geometry. Protein Sci. 1995 May;4(5):863–871. doi: 10.1002/pro.5560040506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Murzin A. G., Brenner S. E., Hubbard T., Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol. 1995 Apr 7;247(4):536–540. doi: 10.1006/jmbi.1995.0159. [DOI] [PubMed] [Google Scholar]
  30. Muñoz V., Serrano L. Intrinsic secondary structure propensities of the amino acids, using statistical phi-psi matrices: comparison with experimental scales. Proteins. 1994 Dec;20(4):301–311. doi: 10.1002/prot.340200403. [DOI] [PubMed] [Google Scholar]
  31. Orengo C. A., Flores T. P., Taylor W. R., Thornton J. M. Identification and classification of protein fold families. Protein Eng. 1993 Jul;6(5):485–500. doi: 10.1093/protein/6.5.485. [DOI] [PubMed] [Google Scholar]
  32. Otzen D. E., Fersht A. R. Side-chain determinants of beta-sheet stability. Biochemistry. 1995 May 2;34(17):5718–5724. doi: 10.1021/bi00017a003. [DOI] [PubMed] [Google Scholar]
  33. Park B., Levitt M. Energy functions that discriminate X-ray and near native folds from well-constructed decoys. J Mol Biol. 1996 May 3;258(2):367–392. doi: 10.1006/jmbi.1996.0256. [DOI] [PubMed] [Google Scholar]
  34. Reva B. A., Finkelstein A. V. Search for the most stable folds of protein chains: II. Computation of stable architectures of beta-proteins using a self-consistent molecular field theory. Protein Eng. 1996 May;9(5):399–411. doi: 10.1093/protein/9.5.399. [DOI] [PubMed] [Google Scholar]
  35. Richardson J. S. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339. doi: 10.1016/s0065-3233(08)60520-3. [DOI] [PubMed] [Google Scholar]
  36. Seckler R., Jaenicke R. Protein folding and protein refolding. FASEB J. 1992 May;6(8):2545–2552. doi: 10.1096/fasebj.6.8.1592207. [DOI] [PubMed] [Google Scholar]
  37. Sippl M. J. Boltzmann's principle, knowledge-based mean fields and protein folding. An approach to the computational determination of protein structures. J Comput Aided Mol Des. 1993 Aug;7(4):473–501. doi: 10.1007/BF02337562. [DOI] [PubMed] [Google Scholar]
  38. Sippl M. J. Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins. J Mol Biol. 1990 Jun 20;213(4):859–883. doi: 10.1016/s0022-2836(05)80269-4. [DOI] [PubMed] [Google Scholar]
  39. Sippl M. J. Knowledge-based potentials for proteins. Curr Opin Struct Biol. 1995 Apr;5(2):229–235. doi: 10.1016/0959-440x(95)80081-6. [DOI] [PubMed] [Google Scholar]
  40. Skolnick J., Jaroszewski L., Kolinski A., Godzik A. Derivation and testing of pair potentials for protein folding. When is the quasichemical approximation correct? Protein Sci. 1997 Mar;6(3):676–688. doi: 10.1002/pro.5560060317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Smith C. K., Regan L. Guidelines for protein design: the energetics of beta sheet side chain interactions. Science. 1995 Nov 10;270(5238):980–982. doi: 10.1126/science.270.5238.980. [DOI] [PubMed] [Google Scholar]
  42. Smith C. K., Withka J. M., Regan L. A thermodynamic scale for the beta-sheet forming tendencies of the amino acids. Biochemistry. 1994 May 10;33(18):5510–5517. doi: 10.1021/bi00184a020. [DOI] [PubMed] [Google Scholar]
  43. Tanaka S., Scheraga H. A. Medium- and long-range interaction parameters between amino acids for predicting three-dimensional structures of proteins. Macromolecules. 1976 Nov-Dec;9(6):945–950. doi: 10.1021/ma60054a013. [DOI] [PubMed] [Google Scholar]
  44. Widmer H., Widmer A., Braun W. Extensive distance geometry calculations with different NOE calibrations: new criteria for structure selection applied to Sandostatin and BPTI. J Biomol NMR. 1993 May;3(3):307–324. doi: 10.1007/BF00212517. [DOI] [PubMed] [Google Scholar]
  45. Williams R. W., Chang A., Juretić D., Loughran S. Secondary structure predictions and medium range interactions. Biochim Biophys Acta. 1987 Nov 26;916(2):200–204. doi: 10.1016/0167-4838(87)90109-9. [DOI] [PubMed] [Google Scholar]
  46. Wouters M. A., Curmi P. M. An analysis of side chain interactions and pair correlations within antiparallel beta-sheets: the differences between backbone hydrogen-bonded and non-hydrogen-bonded residue pairs. Proteins. 1995 Jun;22(2):119–131. doi: 10.1002/prot.340220205. [DOI] [PubMed] [Google Scholar]
  47. Wüthrich K., Wagner G., Richarz R., Braun W. Correlations between internal mobility and stability of globular proteins. Biophys J. 1980 Oct;32(1):549–560. doi: 10.1016/S0006-3495(80)84989-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Yang A. S., Honig B. Free energy determinants of secondary structure formation: II. Antiparallel beta-sheets. J Mol Biol. 1995 Sep 22;252(3):366–376. doi: 10.1006/jmbi.1995.0503. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES