Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Feb;8(2):261–270. doi: 10.1110/ps.8.2.261

Biophysical characterization of a designed TMV coat protein mutant, R46G, that elicits a moderate hypersensitivity response in Nicotiana sylvestris.

J M Toedt 1, E H Braswell 1, T M Schuster 1, D A Yphantis 1, Z F Taraporewala 1, J N Culver 1
PMCID: PMC2144261  PMID: 10048319

Abstract

The hypersensitivity resistance response directed by the N' gene in Nicotiana sylvestris is elicited by the tobacco mosaic virus (TMV) coat protein R46G, but not by the U1 wild-type TMV coat protein. In this study, the structural and hydrodynamic properties of R46G and wild-type coat proteins were compared for variations that may explain N' gene elicitation. Circular dichroism spectroscopy reveals no significant secondary or tertiary structural differences between the elicitor and nonelicitor coat proteins. Analytical ultracentrifugation studies, however, do show different concentration dependencies of the weight average sedimentation coefficients at 4 degrees C. Viral reconstitution kinetics at 20 degrees C were used to determine viral assembly rates and as an initial assay of the rate of 20S formation, the obligate species for viral reconstitution. These kinetic results reveal a decreased lag time for reconstitution performed with R46G that initially lack the 20S aggregate. However, experiments performed with 20S initially present reveal no detectable differences indicating that the mechanism of viral assembly is similar for the two coat protein species. Therefore, an increased rate of 20S formation from R46G subunits may explain the differences in the viral reconstitution lag times. The inferred increase in the rate of 20S formation is verified by direct measurement of the 20S boundary as a function of time at 20 degrees C using velocity sedimentation analysis. These results are consistent with the interpretation that there may be an altered size distribution and/or lifetime of the small coat protein aggregates in elicitors that allows N. sylvestris to recognize the invading virus.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler A. J., Greenfield N. J., Fasman G. D. Circular dichroism and optical rotatory dispersion of proteins and polypeptides. Methods Enzymol. 1973;27:675–735. doi: 10.1016/s0076-6879(73)27030-1. [DOI] [PubMed] [Google Scholar]
  2. CASPAR D. L. ASSEMBLY AND STABILITY OF THE TOBACCO MOSAIC VIRUS PARTICLE. Adv Protein Chem. 1963;18:37–121. doi: 10.1016/s0065-3233(08)60268-5. [DOI] [PubMed] [Google Scholar]
  3. Correia J. J., Shire S., Yphantis D. A., Schuster T. M. Sedimentation equilibrium measurements of the intermediate-size tobacco mosaic virus protein polymers. Biochemistry. 1985 Jun 18;24(13):3292–3297. doi: 10.1021/bi00334a033. [DOI] [PubMed] [Google Scholar]
  4. Culver J. N., Dawson W. O. Tobacco mosaic virus coat protein: an elicitor of the hypersensitive reaction but not required for the development of mosaic symptoms in Nicotiana sylvestris. Virology. 1989 Dec;173(2):755–758. doi: 10.1016/0042-6822(89)90592-8. [DOI] [PubMed] [Google Scholar]
  5. Culver J. N., Stubbs G., Dawson W. O. Structure-function relationship between tobacco mosaic virus coat protein and hypersensitivity in Nicotiana sylvestris. J Mol Biol. 1994 Sep 16;242(2):130–138. doi: 10.1006/jmbi.1994.1564. [DOI] [PubMed] [Google Scholar]
  6. FUNATSU G., FRAENKEL-CONRAT H. LOCATION OF AMINO ACID EXCHANGES IN CHEMICALLY EVOKED MUTANTS OF TOBACCO MOSAIC VIRUS. Biochemistry. 1964 Sep;3:1356–1362. doi: 10.1021/bi00897a028. [DOI] [PubMed] [Google Scholar]
  7. Fraenkel-Conrat H., Williams R. C. RECONSTITUTION OF ACTIVE TOBACCO MOSAIC VIRUS FROM ITS INACTIVE PROTEIN AND NUCLEIC ACID COMPONENTS. Proc Natl Acad Sci U S A. 1955 Oct 15;41(10):690–698. doi: 10.1073/pnas.41.10.690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hirth L., Richards K. E. Tobacco mosaic virus: model for structure and function of a simple virus. Adv Virus Res. 1981;26:145–199. doi: 10.1016/s0065-3527(08)60423-6. [DOI] [PubMed] [Google Scholar]
  9. Holmes K. C. Protein-RNA interactions during TMV assembly. J Supramol Struct. 1979;12(3):305–320. doi: 10.1002/jss.400120304. [DOI] [PubMed] [Google Scholar]
  10. Holowka D., Baird B. Antigen-mediated IGE receptor aggregation and signaling: a window on cell surface structure and dynamics. Annu Rev Biophys Biomol Struct. 1996;25:79–112. doi: 10.1146/annurev.bb.25.060196.000455. [DOI] [PubMed] [Google Scholar]
  11. Jonathan P., Butler G., Durham A. C. Tobacco mosaic virus protein aggregation and the virus assembly. Adv Protein Chem. 1977;31:187–251. doi: 10.1016/s0065-3233(08)60219-3. [DOI] [PubMed] [Google Scholar]
  12. Keen N. T. The molecular biology of disease resistance. Plant Mol Biol. 1992 May;19(1):109–122. doi: 10.1007/BF00015609. [DOI] [PubMed] [Google Scholar]
  13. Knorr D. A., Dawson W. O. A point mutation in the tobacco mosaic virus capsid protein gene induces hypersensitivity in Nicotiana sylvestris. Proc Natl Acad Sci U S A. 1988 Jan;85(1):170–174. doi: 10.1073/pnas.85.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kuntz I. D. Hydration of macromolecules. IV. Polypeptide conformation in frozen solutions. J Am Chem Soc. 1971 Jan 27;93(2):516–518. doi: 10.1021/ja00731a037. [DOI] [PubMed] [Google Scholar]
  15. McMEEKIN T. L., MARSHALL K. Specific volumes of proteins and the relationship to their amino acid contents. Science. 1952 Aug 8;116(3006):142–143. doi: 10.1126/science.116.3006.142. [DOI] [PubMed] [Google Scholar]
  16. Namba K., Caspar D. L., Stubbs G. Enhancement and simplification of macromolecular images. Biophys J. 1988 Apr;53(4):469–475. doi: 10.1016/S0006-3495(88)83125-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Namba K., Pattanayek R., Stubbs G. Visualization of protein-nucleic acid interactions in a virus. Refined structure of intact tobacco mosaic virus at 2.9 A resolution by X-ray fiber diffraction. J Mol Biol. 1989 Jul 20;208(2):307–325. doi: 10.1016/0022-2836(89)90391-4. [DOI] [PubMed] [Google Scholar]
  18. Okada Y. Molecular assembly of tobacco mosaic virus in vitro. Adv Biophys. 1986;22:95–149. doi: 10.1016/0065-227x(86)90004-3. [DOI] [PubMed] [Google Scholar]
  19. Parker J. E., Coleman M. J. Molecular intimacy between proteins specifying plant-pathogen recognition. Trends Biochem Sci. 1997 Aug;22(8):291–296. doi: 10.1016/s0968-0004(97)01089-x. [DOI] [PubMed] [Google Scholar]
  20. Perkins S. J. Protein volumes and hydration effects. The calculations of partial specific volumes, neutron scattering matchpoints and 280-nm absorption coefficients for proteins and glycoproteins from amino acid sequences. Eur J Biochem. 1986 May 15;157(1):169–180. doi: 10.1111/j.1432-1033.1986.tb09653.x. [DOI] [PubMed] [Google Scholar]
  21. Pfitzner U. M., Pfitzner A. J. Expression of a viral avirulence gene in transgenic plants is sufficient to induce the hypersensitive defense reaction. Mol Plant Microbe Interact. 1992 Jul-Aug;5(4):318–321. doi: 10.1094/mpmi-5-318. [DOI] [PubMed] [Google Scholar]
  22. Philo J. S. An improved function for fitting sedimentation velocity data for low-molecular-weight solutes. Biophys J. 1997 Jan;72(1):435–444. doi: 10.1016/S0006-3495(97)78684-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Raghavendra K., Adams M. L., Schuster T. M. Tobacco mosaic virus protein aggregates in solution: structural comparison of 20S aggregates with those near conditions for disk crystallization. Biochemistry. 1985 Jun 18;24(13):3298–3304. doi: 10.1021/bi00334a034. [DOI] [PubMed] [Google Scholar]
  24. Raghavendra K., Kelly J. A., Khairallah L., Schuster T. M. Structure and function of disk aggregates of the coat protein of tobacco mosaic virus. Biochemistry. 1988 Oct 4;27(20):7583–7588. doi: 10.1021/bi00420a002. [DOI] [PubMed] [Google Scholar]
  25. Saito T., Meshi T., Takamatsu N., Okada Y. Coat protein gene sequence of tobacco mosaic virus encodes a host response determinant. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6074–6077. doi: 10.1073/pnas.84.17.6074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Saito T., Yamanaka K., Watanabe Y., Takamatsu N., Meshi T., Okada Y. Mutational analysis of the coat protein gene of tobacco mosaic virus in relation to hypersensitive response in tobacco plants with the N' gene. Virology. 1989 Nov;173(1):11–20. doi: 10.1016/0042-6822(89)90217-1. [DOI] [PubMed] [Google Scholar]
  27. Scheele R. B., Schuster T. M. Kinetics of protein subunit interactions: simulation of a polymerization overshoot. Biopolymers. 1974;13(2):276–288. doi: 10.1002/bip.1974.360130204. [DOI] [PubMed] [Google Scholar]
  28. Schuster T. M., Scheele R. B., Adams M. L., Shire S. J., Steckert J. J., Potschka M. Studies on the mechanism of assembly of tobacco mosaic virus. Biophys J. 1980 Oct;32(1):313–329. doi: 10.1016/S0006-3495(80)84959-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schuster T. M., Toedt J. M. New revolutions in the evolution of analytical ultracentrifugation. Curr Opin Struct Biol. 1996 Oct;6(5):650–658. doi: 10.1016/s0959-440x(96)80032-7. [DOI] [PubMed] [Google Scholar]
  30. Shire S. J., Steckert J. J., Adams M. L., Schuster T. M. Kinetics and mechanism of tobacco mosaic virus assembly: direct measurement of relative rates of incorporation of 4S and 20S protein. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2745–2749. doi: 10.1073/pnas.76.6.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shire S. J., Steckert J. J., Schuster T. M. Mechanism of self-assembly of tobacco mosaic virus protein. II. Characterization of the metastable polymerization nucleus and the initial stages of helix formation. J Mol Biol. 1979 Feb 5;127(4):487–506. doi: 10.1016/0022-2836(79)90233-x. [DOI] [PubMed] [Google Scholar]
  32. Stafford W. F., 3rd Boundary analysis in sedimentation transport experiments: a procedure for obtaining sedimentation coefficient distributions using the time derivative of the concentration profile. Anal Biochem. 1992 Jun;203(2):295–301. doi: 10.1016/0003-2697(92)90316-y. [DOI] [PubMed] [Google Scholar]
  33. Taraporewala Z. F., Culver J. N. Identification of an elicitor active site within the three-dimensional structure of the tobacco mosaic tobamovirus coat protein. Plant Cell. 1996 Feb;8(2):169–178. doi: 10.1105/tpc.8.2.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Teller D. C. Accessible area, packing volumes and interaction surfaces of globular proteins. Nature. 1976 Apr 22;260(5553):729–731. doi: 10.1038/260729a0. [DOI] [PubMed] [Google Scholar]
  35. Wittmann H. G., Wittmann-Liebold B. Protein chemical studies of two RNA viruses and their mutants. Cold Spring Harb Symp Quant Biol. 1966;31:163–172. doi: 10.1101/sqb.1966.031.01.024. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES