Abstract
Hydrophobic substitutions at solvent-exposed positions in two alpha-helical regions of the bacteriophage P22 Arc repressor were introduced by combinatorial mutagenesis. In helix A, hydrophobic residues were tolerated individually at each of the five positions examined, but multiple substitutions were poorly tolerated as shown by the finding that mutants with more than two additional hydrophobic residues were biologically inactive. Several inactive helix A variants were purified and found to have reduced thermal stability relative to wild-type Arc, with a rough correlation between the number of polar-to-hydrophobic substitutions and the magnitude of the stability defect. Quite different results were obtained in helix B, where variants with as many as five polar-to-hydrophobic substitutions were found to be biologically active and one variant with three hydrophobic substitutions had a t(m) 6 degrees C higher than wild-type. By contrast, a helix A mutant with three similar polar-to-hydrophobic substitutions was 23 degrees C less stable than wild-type. Also, one set of three polar-to-hydrophobic substitutions in helix B was tolerated when introduced into the wild-type background but not when introduced into an equally active mutant having a nearly identical structure. Context effects occur both when comparing different regions of the same protein and when comparing the same region in two different homologues.
Full Text
The Full Text of this article is available as a PDF (570.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bowie J. U., Reidhaar-Olson J. F., Lim W. A., Sauer R. T. Deciphering the message in protein sequences: tolerance to amino acid substitutions. Science. 1990 Mar 16;247(4948):1306–1310. doi: 10.1126/science.2315699. [DOI] [PubMed] [Google Scholar]
- Bowie J. U., Sauer R. T. Equilibrium dissociation and unfolding of the Arc repressor dimer. Biochemistry. 1989 Sep 5;28(18):7139–7143. doi: 10.1021/bi00444a001. [DOI] [PubMed] [Google Scholar]
- Bowie J. U., Sauer R. T. Identifying determinants of folding and activity for a protein of unknown structure. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2152–2156. doi: 10.1073/pnas.86.7.2152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowler B. E., May K., Zaragoza T., York P., Dong A., Caughey W. S. Destabilizing effects of replacing a surface lysine of cytochrome c with aromatic amino acids: implications for the denatured state. Biochemistry. 1993 Jan 12;32(1):183–190. doi: 10.1021/bi00052a024. [DOI] [PubMed] [Google Scholar]
- Brown B. M., Bowie J. U., Sauer R. T. Arc repressor is tetrameric when bound to operator DNA. Biochemistry. 1990 Dec 25;29(51):11189–11195. doi: 10.1021/bi00503a006. [DOI] [PubMed] [Google Scholar]
- Dill K. A., Shortle D. Denatured states of proteins. Annu Rev Biochem. 1991;60:795–825. doi: 10.1146/annurev.bi.60.070191.004051. [DOI] [PubMed] [Google Scholar]
- Hendsch Z. S., Jonsson T., Sauer R. T., Tidor B. Protein stabilization by removal of unsatisfied polar groups: computational approaches and experimental tests. Biochemistry. 1996 Jun 18;35(24):7621–7625. doi: 10.1021/bi9605191. [DOI] [PubMed] [Google Scholar]
- Herrmann L., Bowler B. E., Dong A., Caughey W. S. The effects of hydrophilic to hydrophobic surface mutations on the denatured state of iso-1-cytochrome c: investigation of aliphatic residues. Biochemistry. 1995 Mar 7;34(9):3040–3047. doi: 10.1021/bi00009a035. [DOI] [PubMed] [Google Scholar]
- Milla M. E., Brown B. M., Sauer R. T. P22 Arc repressor: enhanced expression of unstable mutants by addition of polar C-terminal sequences. Protein Sci. 1993 Dec;2(12):2198–2205. doi: 10.1002/pro.5560021219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milla M. E., Brown B. M., Sauer R. T. Protein stability effects of a complete set of alanine substitutions in Arc repressor. Nat Struct Biol. 1994 Aug;1(8):518–523. doi: 10.1038/nsb0894-518. [DOI] [PubMed] [Google Scholar]
- Milla M. E., Sauer R. T. Critical side-chain interactions at a subunit interface in the Arc repressor dimer. Biochemistry. 1995 Mar 14;34(10):3344–3351. doi: 10.1021/bi00010a025. [DOI] [PubMed] [Google Scholar]
- Miller S., Janin J., Lesk A. M., Chothia C. Interior and surface of monomeric proteins. J Mol Biol. 1987 Aug 5;196(3):641–656. doi: 10.1016/0022-2836(87)90038-6. [DOI] [PubMed] [Google Scholar]
- Pakula A. A., Sauer R. T. Reverse hydrophobic effects relieved by amino-acid substitutions at a protein surface. Nature. 1990 Mar 22;344(6264):363–364. doi: 10.1038/344363a0. [DOI] [PubMed] [Google Scholar]
- Raumann B. E., Rould M. A., Pabo C. O., Sauer R. T. DNA recognition by beta-sheets in the Arc repressor-operator crystal structure. Nature. 1994 Feb 24;367(6465):754–757. doi: 10.1038/367754a0. [DOI] [PubMed] [Google Scholar]
- Reidhaar-Olson J. F., Sauer R. T. Combinatorial cassette mutagenesis as a probe of the informational content of protein sequences. Science. 1988 Jul 1;241(4861):53–57. doi: 10.1126/science.3388019. [DOI] [PubMed] [Google Scholar]
- Reidhaar-Olson J. F., Sauer R. T. Functionally acceptable substitutions in two alpha-helical regions of lambda repressor. Proteins. 1990;7(4):306–316. doi: 10.1002/prot.340070403. [DOI] [PubMed] [Google Scholar]
- Rennell D., Bouvier S. E., Hardy L. W., Poteete A. R. Systematic mutation of bacteriophage T4 lysozyme. J Mol Biol. 1991 Nov 5;222(1):67–88. doi: 10.1016/0022-2836(91)90738-r. [DOI] [PubMed] [Google Scholar]
- Robinson C. R., Rentzeperis D., Silva J. L., Sauer R. T. Formation of a denatured dimer limits the thermal stability of Arc repressor. J Mol Biol. 1997 Oct 31;273(3):692–700. doi: 10.1006/jmbi.1997.1342. [DOI] [PubMed] [Google Scholar]
- Schwehm J. M., Kristyanne E. S., Biggers C. C., Stites W. E. Stability effects of increasing the hydrophobicity of solvent-exposed side chains in staphylococcal nuclease. Biochemistry. 1998 May 12;37(19):6939–6948. doi: 10.1021/bi9725069. [DOI] [PubMed] [Google Scholar]
- Suckow J., Markiewicz P., Kleina L. G., Miller J., Kisters-Woike B., Müller-Hill B. Genetic studies of the Lac repressor. XV: 4000 single amino acid substitutions and analysis of the resulting phenotypes on the basis of the protein structure. J Mol Biol. 1996 Aug 30;261(4):509–523. doi: 10.1006/jmbi.1996.0479. [DOI] [PubMed] [Google Scholar]
- Vazquez S., Thomas C., Lew R. A., Humphreys R. E. Favored and suppressed patterns of hydrophobic and nonhydrophobic amino acids in protein sequences. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9100–9104. doi: 10.1073/pnas.90.19.9100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vershon A. K., Bowie J. U., Karplus T. M., Sauer R. T. Isolation and analysis of arc repressor mutants: evidence for an unusual mechanism of DNA binding. Proteins. 1986 Dec;1(4):302–311. doi: 10.1002/prot.340010404. [DOI] [PubMed] [Google Scholar]
- Waldburger C. D., Schildbach J. F., Sauer R. T. Are buried salt bridges important for protein stability and conformational specificity? Nat Struct Biol. 1995 Feb;2(2):122–128. doi: 10.1038/nsb0295-122. [DOI] [PubMed] [Google Scholar]
