Abstract
Glucosamine 6-phosphate synthase converts fructose-6P into glucosamine-6P or glucose-6P depending on the presence or absence of glutamine. The isomerase activity is associated with a 40-kDa C-terminal domain, which has already been characterized crystallographically. Now the three-dimensional structures of the complexes with the reaction product glucose-6P and with the transition state analog 2-amino-2-deoxyglucitol-6P have been determined. Glucose-6P binds in a cyclic form whereas 2-amino-2-deoxyglucitol-6P is in an extended conformation. The information on ligand-protein interactions observed in the crystal structures together with the isotope exchange and site-directed mutagenesis data allow us to propose a mechanism of the isomerase activity of glucosamine-6P synthase. The sugar phosphate isomerization involves a ring opening step catalyzed by His504 and an enolization step with Glu488 catalyzing the hydrogen transfer from C1 to C2 of the substrate. The enediol intermediate is stabilized by a helix dipole and the epsilon-amino group of Lys603. Lys485 may play a role in deprotonating the hydroxyl O1 of the intermediate.
Full Text
The Full Text of this article is available as a PDF (534.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Badet B., Vermoote P., Haumont P. Y., Lederer F., LeGoffic F. Glucosamine synthetase from Escherichia coli: purification, properties, and glutamine-utilizing site location. Biochemistry. 1987 Apr 7;26(7):1940–1948. doi: 10.1021/bi00381a023. [DOI] [PubMed] [Google Scholar]
- Banerjee S., Anderson F., Farber G. K. The evolution of sugar isomerases. Protein Eng. 1995 Dec;8(12):1189–1195. doi: 10.1093/protein/8.12.1189. [DOI] [PubMed] [Google Scholar]
- Blacklow S. C., Knowles J. R. How can a catalytic lesion be offset? The energetics of two pseudorevertant triosephosphate isomerases. Biochemistry. 1990 May 1;29(17):4099–4108. doi: 10.1021/bi00469a012. [DOI] [PubMed] [Google Scholar]
- Collyer C. A., Blow D. M. Observations of reaction intermediates and the mechanism of aldose-ketose interconversion by D-xylose isomerase. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1362–1366. doi: 10.1073/pnas.87.4.1362. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denisot M. A., Le Goffic F., Badet B. Glucosamine-6-phosphate synthase from Escherichia coli yields two proteins upon limited proteolysis: identification of the glutamine amidohydrolase and 2R ketose/aldose isomerase-bearing domains based on their biochemical properties. Arch Biochem Biophys. 1991 Jul;288(1):225–230. doi: 10.1016/0003-9861(91)90188-o. [DOI] [PubMed] [Google Scholar]
- Golinelli-Pimpaneau B., Badet B. Possible involvement of Lys603 from Escherichia coli glucosamine-6-phosphate synthase in the binding of its substrate fructose 6-phosphate. Eur J Biochem. 1991 Oct 1;201(1):175–182. doi: 10.1111/j.1432-1033.1991.tb16271.x. [DOI] [PubMed] [Google Scholar]
- Isupov M. N., Obmolova G., Butterworth S., Badet-Denisot M. A., Badet B., Polikarpov I., Littlechild J. A., Teplyakov A. Substrate binding is required for assembly of the active conformation of the catalytic site in Ntn amidotransferases: evidence from the 1.8 A crystal structure of the glutaminase domain of glucosamine 6-phosphate synthase. Structure. 1996 Jul 15;4(7):801–810. doi: 10.1016/s0969-2126(96)00087-1. [DOI] [PubMed] [Google Scholar]
- Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
- Knowles J. R. Enzyme catalysis: not different, just better. Nature. 1991 Mar 14;350(6314):121–124. doi: 10.1038/350121a0. [DOI] [PubMed] [Google Scholar]
- Lavie A., Allen K. N., Petsko G. A., Ringe D. X-ray crystallographic structures of D-xylose isomerase-substrate complexes position the substrate and provide evidence for metal movement during catalysis. Biochemistry. 1994 May 10;33(18):5469–5480. doi: 10.1021/bi00184a016. [DOI] [PubMed] [Google Scholar]
- Malaisse-Lagae F., Liemans V., Yaylali B., Sener A., Malaisse W. J. Phosphoglucoisomerase-catalyzed interconversion of hexose phosphates; comparison with phosphomannoisomerase. Biochim Biophys Acta. 1989 Oct 5;998(2):118–125. doi: 10.1016/0167-4838(89)90262-8. [DOI] [PubMed] [Google Scholar]
- Massière F., Badet-Denisot M. A. The mechanism of glutamine-dependent amidotransferases. Cell Mol Life Sci. 1998 Mar;54(3):205–222. doi: 10.1007/s000180050145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murshudov G. N., Vagin A. A., Dodson E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240–255. doi: 10.1107/S0907444996012255. [DOI] [PubMed] [Google Scholar]
- Nickbarg E. B., Davenport R. C., Petsko G. A., Knowles J. R. Triosephosphate isomerase: removal of a putatively electrophilic histidine residue results in a subtle change in catalytic mechanism. Biochemistry. 1988 Aug 9;27(16):5948–5960. doi: 10.1021/bi00416a019. [DOI] [PubMed] [Google Scholar]
- Obmolova G., Badet-Denisot M. A., Badet B., Teplyakov A. Crystallization and preliminary X-ray analysis of the two domains of glucosamine-6-phosphate synthase from Escherichia coli. J Mol Biol. 1994 Oct 7;242(5):703–705. doi: 10.1006/jmbi.1994.1619. [DOI] [PubMed] [Google Scholar]
- Oliva G., Fontes M. R., Garratt R. C., Altamirano M. M., Calcagno M. L., Horjales E. Structure and catalytic mechanism of glucosamine 6-phosphate deaminase from Escherichia coli at 2.1 A resolution. Structure. 1995 Dec 15;3(12):1323–1332. doi: 10.1016/s0969-2126(01)00270-2. [DOI] [PubMed] [Google Scholar]
- Rose I. A. Mechanism of the aldose-ketose isomerase reactions. Adv Enzymol Relat Areas Mol Biol. 1975;43:491–517. doi: 10.1002/9780470122884.ch6. [DOI] [PubMed] [Google Scholar]
- Teplyakov A., Obmolova G., Badet-Denisot M. A., Badet B., Polikarpov I. Involvement of the C terminus in intramolecular nitrogen channeling in glucosamine 6-phosphate synthase: evidence from a 1.6 A crystal structure of the isomerase domain. Structure. 1998 Aug 15;6(8):1047–1055. doi: 10.1016/s0969-2126(98)00105-1. [DOI] [PubMed] [Google Scholar]
- Traxinger R. R., Marshall S. Coordinated regulation of glutamine:fructose-6-phosphate amidotransferase activity by insulin, glucose, and glutamine. Role of hexosamine biosynthesis in enzyme regulation. J Biol Chem. 1991 Jun 5;266(16):10148–10154. [PubMed] [Google Scholar]
- Zalkin H., Smith J. L. Enzymes utilizing glutamine as an amide donor. Adv Enzymol Relat Areas Mol Biol. 1998;72:87–144. doi: 10.1002/9780470123188.ch4. [DOI] [PubMed] [Google Scholar]
- Zalkin H. The amidotransferases. Adv Enzymol Relat Areas Mol Biol. 1993;66:203–309. doi: 10.1002/9780470123126.ch5. [DOI] [PubMed] [Google Scholar]