Abstract
A novel superfamily designated MAPEG (Membrane Associated Proteins in Eicosanoid and Glutathione metabolism), including members of widespread origin with diversified biological functions is defined according to enzymatic activities, sequence motifs, and structural properties. Two of the members are crucial for leukotriene biosynthesis, and three are cytoprotective exhibiting glutathione S-transferase and peroxidase activities. Expression of the most recently recognized member is strongly induced by p53, and may therefore play a role in apoptosis or cancer development. In spite of the different biological functions, all six proteins demonstrate common structural characteristics typical of membrane proteins. In addition, homologues are identified in plants, fungi, and bacteria, demonstrating this superfamily to be generally occurring.
Full Text
The Full Text of this article is available as a PDF (228.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersson C., Morgenstern R. Chemical modification of rat liver microsomal glutathione transferase defines residues of importance for catalytic function. Biochem J. 1990 Dec 1;272(2):479–484. doi: 10.1042/bj2720479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andersson C., Weinander R., Lundqvist G., DePierre J. W., Morgenstern R. Functional and structural membrane topology of rat liver microsomal glutathione transferase. Biochim Biophys Acta. 1994 Feb 16;1204(2):298–304. doi: 10.1016/0167-4838(94)90021-3. [DOI] [PubMed] [Google Scholar]
- Cserzö M., Wallin E., Simon I., von Heijne G., Elofsson A. Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng. 1997 Jun;10(6):673–676. doi: 10.1093/protein/10.6.673. [DOI] [PubMed] [Google Scholar]
- DeJong J. L., Morgenstern R., Jörnvall H., DePierre J. W., Tu C. P. Gene expression of rat and human microsomal glutathione S-transferases. J Biol Chem. 1988 Jun 15;263(17):8430–8436. [PubMed] [Google Scholar]
- Dixon R. A., Diehl R. E., Opas E., Rands E., Vickers P. J., Evans J. F., Gillard J. W., Miller D. K. Requirement of a 5-lipoxygenase-activating protein for leukotriene synthesis. Nature. 1990 Jan 18;343(6255):282–284. doi: 10.1038/343282a0. [DOI] [PubMed] [Google Scholar]
- Hebert H., Schmidt-Krey I., Morgenstern R., Murata K., Hirai T., Mitsuoka K., Fujiyoshi Y. The 3.0 A projection structure of microsomal glutathione transferase as determined by electron crystallography of p 21212 two-dimensional crystals. J Mol Biol. 1997 Sep 5;271(5):751–758. doi: 10.1006/jmbi.1997.1216. [DOI] [PubMed] [Google Scholar]
- Jakobsson P. J., Mancini J. A., Ford-Hutchinson A. W. Identification and characterization of a novel human microsomal glutathione S-transferase with leukotriene C4 synthase activity and significant sequence identity to 5-lipoxygenase-activating protein and leukotriene C4 synthase. J Biol Chem. 1996 Sep 6;271(36):22203–22210. doi: 10.1074/jbc.271.36.22203. [DOI] [PubMed] [Google Scholar]
- Jakobsson P. J., Mancini J. A., Riendeau D., Ford-Hutchinson A. W. Identification and characterization of a novel microsomal enzyme with glutathione-dependent transferase and peroxidase activities. J Biol Chem. 1997 Sep 5;272(36):22934–22939. doi: 10.1074/jbc.272.36.22934. [DOI] [PubMed] [Google Scholar]
- Jörnvall H., Persson B., Krook M., Atrian S., Gonzàlez-Duarte R., Jeffery J., Ghosh D. Short-chain dehydrogenases/reductases (SDR). Biochemistry. 1995 May 9;34(18):6003–6013. doi: 10.1021/bi00018a001. [DOI] [PubMed] [Google Scholar]
- Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Lam B. K., Penrose J. F., Freeman G. J., Austen K. F. Expression cloning of a cDNA for human leukotriene C4 synthase, an integral membrane protein conjugating reduced glutathione to leukotriene A4. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7663–7667. doi: 10.1073/pnas.91.16.7663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lam B. K., Penrose J. F., Xu K., Baldasaro M. H., Austen K. F. Site-directed mutagenesis of human leukotriene C4 synthase. J Biol Chem. 1997 May 23;272(21):13923–13928. doi: 10.1074/jbc.272.21.13923. [DOI] [PubMed] [Google Scholar]
- Mancini J. A., Abramovitz M., Cox M. E., Wong E., Charleson S., Perrier H., Wang Z., Prasit P., Vickers P. J. 5-lipoxygenase-activating protein is an arachidonate binding protein. FEBS Lett. 1993 Mar 8;318(3):277–281. doi: 10.1016/0014-5793(93)80528-3. [DOI] [PubMed] [Google Scholar]
- Miller D. K., Gillard J. W., Vickers P. J., Sadowski S., Léveillé C., Mancini J. A., Charleson P., Dixon R. A., Ford-Hutchinson A. W., Fortin R. Identification and isolation of a membrane protein necessary for leukotriene production. Nature. 1990 Jan 18;343(6255):278–281. doi: 10.1038/343278a0. [DOI] [PubMed] [Google Scholar]
- Morgenstern R., Guthenberg C., Depierre J. W. Microsomal glutathione S-transferase. Purification, initial characterization and demonstration that it is not identical to the cytosolic glutathione S-transferases A, B and C. Eur J Biochem. 1982 Nov;128(1):243–248. [PubMed] [Google Scholar]
- Mosialou E., Piemonte F., Andersson C., Vos R. M., van Bladeren P. J., Morgenstern R. Microsomal glutathione transferase: lipid-derived substrates and lipid dependence. Arch Biochem Biophys. 1995 Jul 10;320(2):210–216. doi: 10.1016/0003-9861(95)90002-0. [DOI] [PubMed] [Google Scholar]
- Nicholson D. W., Ali A., Vaillancourt J. P., Calaycay J. R., Mumford R. A., Zamboni R. J., Ford-Hutchinson A. W. Purification to homogeneity and the N-terminal sequence of human leukotriene C4 synthase: a homodimeric glutathione S-transferase composed of 18-kDa subunits. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):2015–2019. doi: 10.1073/pnas.90.5.2015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Persson B., Argos P. Prediction of transmembrane segments in proteins utilising multiple sequence alignments. J Mol Biol. 1994 Mar 25;237(2):182–192. doi: 10.1006/jmbi.1994.1220. [DOI] [PubMed] [Google Scholar]
- Polyak K., Xia Y., Zweier J. L., Kinzler K. W., Vogelstein B. A model for p53-induced apoptosis. Nature. 1997 Sep 18;389(6648):300–305. doi: 10.1038/38525. [DOI] [PubMed] [Google Scholar]
- Samuelsson B. Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science. 1983 May 6;220(4597):568–575. doi: 10.1126/science.6301011. [DOI] [PubMed] [Google Scholar]
- Scoggan K. A., Jakobsson P. J., Ford-Hutchinson A. W. Production of leukotriene C4 in different human tissues is attributable to distinct membrane bound biosynthetic enzymes. J Biol Chem. 1997 Apr 11;272(15):10182–10187. doi: 10.1074/jbc.272.15.10182. [DOI] [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vickers P. J., Adam M., Charleson S., Coppolino M. G., Evans J. F., Mancini J. A. Identification of amino acid residues of 5-lipoxygenase-activating protein essential for the binding of leukotriene biosynthesis inhibitors. Mol Pharmacol. 1992 Jul;42(1):94–102. [PubMed] [Google Scholar]
- Weinander R., Ekström L., Andersson C., Raza H., Bergman T., Morgenstern R. Structural and functional aspects of rat microsomal glutathione transferase. The roles of cysteine 49, arginine 107, lysine 67, histidine, and tyrosine residues. J Biol Chem. 1997 Apr 4;272(14):8871–8877. doi: 10.1074/jbc.272.14.8871. [DOI] [PubMed] [Google Scholar]
- Welsch D. J., Creely D. P., Hauser S. D., Mathis K. J., Krivi G. G., Isakson P. C. Molecular cloning and expression of human leukotriene-C4 synthase. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9745–9749. doi: 10.1073/pnas.91.21.9745. [DOI] [PMC free article] [PubMed] [Google Scholar]